Precise and Formal Modelling Methods for
Service Systems

Christine Choppy' and Gianna Reggio?®

! Université Paris 13 — Sorbonne Paris Cité, France
2 DIBRIS, Universita di Genova, Italy

DIBRIS Technical Report n. TR-14-03
April 2014

1 Introduction

In this report we present three different modelling methods for service systems,
but first we introduce our view on what is a service system, by giving a cor-
responding conceptual model. A modelling method, PreciseSoa, is based on the
UML, whereas the other twos are based on the formal logic algebraic notation
CAsL-MbDL, and differ for the descriptive style: property-oriented and construc-
tive, respectively.

The various modelling approaches are presented by applying them to two
cases studies.

The structure of the report is as follows. The two case studies are introduced
in Sect. 2. Our view on the service system is in Sect. 3, and the three modelling
methods are in Sect. 4, 7, and 10 respectively .

2 Case Studies

Here we describe informally two particular service systems, that will be used as
case studies for the three modelling methods that we propose. The two cases
studies have different features, are not trivial, and are originated by real prob-
lems, thus being able to model them is a good validation for our methods.

2.1 Dealer Network

The Dealer Network case study was taken from OMG Adopted Specification of
SoaML [1]. The Dealer Network is a business community including three primary
parties: the dealers, the manufacturers and the shippers. They are independent
parties but they want to work together. Moreover, they have their own business
processes and do not want to change their existing systems. A service oriented
architecture is required to enable this business environment.

There are three services that will support the working of the parties: Place
Order, Get Ship Status and Request Shipping.

The dealers use service Place Order to make an order for the product that
they want to buy from the manufacturers. The service supplies the dealers with
the quote of the product and issues a confirmation when the order is accepted.
If the order is confirmed, the dealer will receive further information about the
order, such as the waybill number to track the shipment information.

The manufacturers use service Request Shipping to have the products rela-
tive to an order delivered to the dealer by a shipper. The shipper informs the
manufacturers of the package picking date and the delivery date. Then, the man-
ufacturers will receive the delivery confirmations when the dealers receive the
products.

The dealers use the Get Ship Status service to get information about the
status of the shipment for the products they ordered (identified by the waybill
number that they received from the manufacturer).

2.2 Office System

Office System has been inspired by the Microsoft Office software. There are
various components in the Office System, but we consider only some of them.
Our case study includes a set of components supporting office works such as
printing, checking spelling and grammar of a given language, and publishing a
web page. We name application a (not better specified) component using them.

There are the following services to support the work of the office components:
Print, Check French, Check English, Check Italian, and Publish on Web.

Service Print provides the applications the means to require the printing of
a document; this service can communicate the result of the request, precisely
“there is no paper”, “the document is not in A4 format”, and “the document
has been printed”. If the paper is not in A4 format, then the user of the service
may request either to reduce the page or to cancel the printing.

Three services (Check English, Check French, and Check Italian) allow to
check the spelling and the grammar of a text written in a specific language
(English, French and Italian). A service of this kind will refuse to do the check,
if the text is not in the language it is able to handle. The result of the checking
will be the list of the found errors.

Service Publish on Web allows to publish web pages on the Internet. The
web page must written in HTML to be published, and the service will refuse
to publish a page not written in correct HTML. Then, if the provided URL is
correct and the corresponding Web server is available, the service will publish
the page, otherwise it will inform of the problems the service user.

3 A View on Services and Service Systems

Fig. 1 presents our view of services and service systems by means of a conceptual
model (having the form of a UML class diagram!).

! In this paper for simplicity we omit the multiplicity equal to 1 in the class diagrams.

[rame -srng |

subparticipant:

name : string

Monolithic Service Interface
Participant i |
S | Message Service Contract
ervice etri
" name : strin
Architecture J

kind : {in, out}

0..1 |/ provide

Structured Service Semantics

Participant

Fig. 1. Service Systems Conceptual Model

The participants, i.e., autonomous entities interacting each others by means
of services, are the basic constituents of a service system. We classify the par-
ticipants into structured and monolithic. A structured participant includes some
inner participants (subparticipants), whereas this is not possible for a mono-
lithic participant, but the latter can be still structured, for example in terms of
components. Service systems are, then, a special kind of structured participants.

A participant is characterized by:

— a number of ports (a port represents an interaction point where a participant
either uses or provides a service), ,

— a number of services, those that it provides or uses at some of its ports,

— only if it structured, a set of subparticipants, a set of local services, and a
service architecture.

A service system is then a structured participant neither offering nor requir-
ing services (and thus without any port), so, as said before, a service system is
a special case of a (structured) participant.

A service architecture presents how the subparticipants of a participant P
provide and use their services to allow P to provide its services, obviously taking
advantage of the services used by P itself.

A service is characterized by a contract, an interface, and a semantics.

The service interface provides the static information needed to interact with
the service. A service interface is conceptually seen as a set of “in” and “out”
messages, were each message is characterized by a name and a list of typed
parameters; the “in messages” are used to require the service functionalities to
the service provider and the “out messages” to answer to such requests.

The service contract focuses on the protocol between the provider and the
consumer of the service. The service contract specifies which are the allowed
interactions between who uses the service and who provides it, and it may be
represented by a labelled transition tree where the transitions are labelled by
messages. All the complete paths (i.e., going from the root till a final node) on
such tree should start with a transition labelled by an in message. Reaching
a final node on such tree means that the service has terminated its activities
started as a reaction to the reception of a request from a consumer.

The service semantics tries to define which are the functionalities offered
by the service. We assume that a service is able to act over a portion of the
real world, that we name the realm of the service, and that it may modify such
realm as the result to having received an in message form a service user, and
that its answers to who uses the service (out messages) depend on the current
status of the realm. Thus, the semantics of a service consists of a description of
the realm, and of a refinement of the labelled transition tree representing the
contract, where now the transitions are equipped with conditions on the realm,
and with the descriptions of possible modifications of the realm itself.

A service architecture defines which are the possible roles for subparticipants
within a structured participant (and thus possibly also within a service system),
and how the pairs of such (roles for) participants are connected to provide and
use services (obviously only if one provides and the other uses the same service),
defining also which are these services.

The conceptual schema presented in Fig. 1 could be the starting point to
produce an informal model of a participant, that we name conceptual level model.
It will consists of the lists of ports, subparticipants and services, and of informal
presentation of the service constituents (interface, contract and semantics) by
means of list of messages and labelled transition trees (where the transitions are
labelled by natural language sentences describing receiving or sending messages),
of the service architectures (by a graphs whose nodes are labelled by participant
roles and whose arcs are labelled by service names), and of the structure and
the behaviour of the monolithic participants.

This kind of informal model will be the starting point to prepare a model of
the service system following the PreciseSoa method orusing the algebraic specifi-
cation language CASL4SOA.

Fig. 2 and 3 present by means of two UML activity diagrams the guidelines
for helping the modeller to produce a conceptual level model of a participant
(and thus, being a special case, of a service system).

4 PreciseSoa: a precise method for modelling service
systems using UML

We propose a method to model the service systems using the UML, called Pre-
ciseSoa. PreciseSoa adheres to the view of services and service systems presented
in Sect. 3, and has been inspired by SoaML (Service oriented architecture Mod-
eling Language), the OMG standard UML profile to architect and model SOA
solutions, adopted in May 2012 [1]. Two complete applications of the method
can be found respectively in Sect. 5 and 6.

We present the structure of the PreciseSoa models by means of the metamodel
shown in Fig. 4, whereas the well-formed constraints are given in Table 1, and
the suggested naming policy is reported in Table 2.

PreciseSoa provides two different kind of models for structured and monolithic
participants; both offer the possibility to model the services required and pro-
vided by a participant; moreover for the structured participants it is possible to

Model participant P e

@ennfv the services that P provides and mnsume§

SL (List of service names)

Foralls inSL madels

[P is monelithic]

[Pis structured]

Identify the subparticipants of P

PL (List of subparticipant types)

For each P’ in PL identity the services that it
provides and consumes (local services of P)

SL' (List of service names)

Forall 5’ inSL' model ' For all P in PL model P"
C DENE w

N

identify how the subparticipants of P work together
by providing and consuming services

Produce the service architecture

Fig. 2. How to produce a conceptual level model of a participant

define the subparticipants, the local services, and how they are organized into
a service architecture, whereas for the monolithic participants the method does
not propose a specific way to model their structure and behaviour. Recall that
a service system is a structured participant neither providing neither consum-
ing services (and thus without ports). As a consequence, we have that a service
system model is a special case of a participant model.

All used classes and datatypes used in a model must defined within the model
itself

4.1 Service Model

A service model consists of a name, a service interface, a service contract, and
a service semantics. As stated in Sect. 3 a service interface presents the in/out
messages that the service exchanges, a service contract specifies an agreement
between who provides and who uses the service on how it is provided and used,
and the semantics says what are the effects of the received messages on the realm
of the service and what will be returned.

A service interface is defined by a class stereotyped <service interface>> and
named as the service itself. It should realize and use respectively two UML
interfaces, defining the in and the out messages by means of operations. The
operations of the interfaces correspond to the messages exchanged between the
service and the participants using and providing it. The operations may have (in)
parameters that must be typed by datatypes (built obviously using only prede-
fined types and other datatypes), and cannot have a return type. The definition
of the needed datatypes should be given together with the two interfaces, thus

Service Model
The classes stereotyped by <service interface>> cannot have any operation.

All operations of the service interfaces should have only parameters typed by datatypes,
and cannot have a return type.

The collaboration part of a service contract should:

— be named as the service itself,

— have exactly two parts connected by a UML connector, one stereotyped by <use>>
and the other by <provide>>, and such parts must be typed by the interfaces used and
realized by the service interface.

A sequence diagram in the behaviour part of a contract should have exactly two lifelines
corresponding to the two parts in the collaboration part of the same contract.

All messages in the sequence diagrams in the behaviour part of a contract of a service
should be built by operations of the used and provided interfaces of that service, and
all these interface operations should appear at least in one of such sequence diagrams.

Participant Model
All services of a participant must have different names.

All subparticipant types must have different names.

A port of a participant type must be typed by the interface of a service of the same
participant.

Service Architecture
All services and participant types of a model should appear in the service architecture
part of the same model.

The ports that are connected in a service architecture must be typed by the a pair of
conjugate service interfaces.
Table 1. PreciseSoa models: constraints

The names of the roles in a service contract should be written in lower, and should be
ending with “er”.
The names of the services and of the interfaces should be written in mixed case, where

each new word begins with a capital letter, starting with a capital letter.

The names of the operations of an interface should be written in mixed case, where
each new word begins with a capital letter, starting with a lower case letter.

The names of datatypes must be substantive, and must written in the mixed case where
each new word begins with a capital letter, starting with a capital letter.

The attributes of the datatypes should be written in mixed case starting with a lower
case letter.
Table 2. PreciseSoa models: naming policy

/Model service S

Qdentify the messages exchanged by S)

@escribe the interface of S)

Identify the conversations between the
service user and the service provider

CDescribe the the contract of S)

Identify the realm of S and how the
service interact with it

@escribe the realm of S and its semantica
- eé /

Fig. 3. How to produce a conceptual level model of a service

Participant Model
name : string

Service Participant Type : Class diagram
System Model A o
[1 -
Monolithic Service Model
- jocal services
name : string o
1 —/
Servicelnterface | | [Servi i |

Participant Model
‘ diag : Class diagram ‘ |d|ag : Sequence diagram [1..*] ‘

Structured
Participant Model

ServiceArchitecture I
diag : Collaboration diagram
configurations : Object diagram [*]

ServiceContract
stat : Collaboration
behav : Sequence diagram [1..*]

Fig. 4. Service System model: metamodel

(see Fig. 4) a service interface consists of a class diagram, that will include a class
stereotyped by <service interface>>, the two interfaces and all needed datatypes.

Fig. 5 shows a generic service interface. The class stereotyped by <service
interface>> should realize the provided interface (represented by the UML real-
ization symbol: the dashed arrow with closed head) and should use the required
interface (represented by the UML dependency: the dashed arrow with open
head).

A conjugate service interface is suggested as a mechanism to connect the
consuming participant and the providing participant. Each service interface has
one conjugate service interface that is named by the name of the corresponding
service interface starting with “ ~ ”; and it is defined transforming the in mes-
sages into out messages, and similarly the out messages into in messages, i.e.,
the realized interface becomes the used one and vice versa.

A service contract consists of a UML collaboration stereotyped by <service
contract>> and named as the service itself, and by a behaviour represented by

<<interface>> <<interface>>
Consumerlnterface Providerinterface
inMessage(int) outMessage(int)
\
\ 7 .
<<use>> \ ’ <<pr0wde>>
N .

ya

<<service interface>>
Serv

Fig. 5. A generic service interface

a set of UML sequence diagrams. The collaboration has exactly two parts cor-
responding to the roles the service provider and consumer, and the sequence
diagrams have exactly two lifelines (one for the service provider role and one for
the service user role).

Fig. 6 shows a generic service contract. The dashed oval is the icon of the
collaboration, whereas the inside boxes represent the collaboration parts and
are used to model the roles of who provides and of who uses the service (the
stereotypes <providex> and <use>> allow to distinguish the two roles). The parts
are typed by interfaces. The sequence diagrams present all possible stories of
the provider using the service showing which messages and in which order the
provider and the consumer exchange in each story. Thus, in Fig. 6, prov is the
role for provider and the Providerlnterface is the interface that it implements to
play that role, whereas cons is the role for consumer and Consumerlnterface is
the interface that it implements to play that role in Serv. The two parts are
connected by a UML connector, to emphasize that they will communicate. Serv
is quite simple, and so after receiving an integer number it will return the same
number increased by 3, thus a unique sequence diagram is enough to model its
contract.

cons : Consumerlinterface prov : Providerinterface

inMessage(X)

I

|

1
outMessage(X+3) I
[

- <<service contract>> =~ <
P Serv ~

{ <<use>> <<provide> >)
\ cons : Consumerlnterface prov : ProviderInterface ,

Fig. 6. A generic service Contract

The service semantics should be defined by modelling the service realm, how
the received messages will result in modifications of the realm status, and how
the realm status influences the messages sent out by the service provider. In
PreciseSoa we model the service semantics by introducing a class Service_Realm
realizing the provided interface, in such a way that its attributes will define
the current status of the service realm. Then, the sequence diagrams defining
the behaviour part of the service contract, should be refined by adding action
specifications to represent the modifications of the realm status and further
guards to influence the choice of which messages to send out and which values
they are carrying depending on the status of the realm. We do not give a generic
example of service semantics.

4.2 Participant Model

In PreciseSoa any kind of participant (monolithic and structured) is described by
a specific participant model.

A participant model introduces a class stereotyped <participant>>, that will
be used to type the specific participants (instances) of that kind, and that we
will name participant class.

A participant is a service provider if it provides a service and is a service
consumer if it uses a service. A participant may provide and consume any num-
ber of services. It means that the same participant may be a “provider” of some
services and a “consumer” of other ones. The UML mechanism of the ports is
used to indicate the points of interaction through which participants interact
with each others to enact services, and the needed ports are added to the partic-
ipant class. There are two kinds of port that a participant class may have, one
is stereotyped by <service>> where a service is provided, and one is stereotyped
by <request> where a participant makes a request for a service to be provided
by other participants. A port is then typed by a service interface. A service port
has the type of the provided service interface, and a request port has the type
of the conjugate of the interface of the required service.

The inner structure and the behaviour of the monolithic participants will be
modelled using the most appropriate UML diagrams, but the PreciseSoa method
does not offer any specific indication, mainly because they may have many dif-
ferent forms, for example, they may be structured in terms of components, or
they have no structuring at all and their behaviour is defined by an activity
diagram.

All the models of the subparticipants of a structured participant (and thus of
a service system, that is a particular kind of structured participant) are collect
in a participant view.

Fig. 7 presents a generic participant view including two participant classes,
The instances of the participant class PartX are the provider of Serv and thus the
class has a <service> port, typed by the service interface Serv. Participant class
PartY types the consumers of this service and has a <request>> port, typed by the
conjugate of the Serv interface (denoted by ~Serv). These ports are the points for
engaging two participants typed byPartX and PartY respectively to enact Serv.

<<participant>> . <<participant>>
PartX [] <<service>> <<request>> O PartY
: Serv : ~Serv

Fig. 7. A generic participant view

4.3 Service Architecture

A service architecture is defined by a UML collaboration with stereotype <service
architecture>>, as shown in Fig. 8, and by a set of architecure configurations. A
service architecture consists of a set of services and a set of (roles for) participants
that work together by providing and consuming services.

The fact that a service is provided and consumed by two participants is
represented by a collaboration use of the collaboration part of the contract of
such service (e.g., :Serv in Fig. 8). There may be several usages of the same or of
different services in a service architecture, and each of them involves a possible
different set of roles (and of the related connectors). The collaboration use is
decorated by S: Serv (S a name and Serv the service name), where S is optional
(as in our example in Fig. 8). The two participants, who play the providing and
consuming roles in a service, will be defined in the contract of this service. The
roles that the two participants play in a service usage, i.e., who is provider and
who is the consumer, are represented by the labels on the dashed line connecting
the parts and the collaboration use.

A participant role in the service architecture is displayed as a UML part (a
solid rectangle) that contains the optional role name and the participant class
typing the role, e.g., : PartX in Fig. 8.

Fig. 8 shows a generic service architecture for a service system, i.e., a struc-
tured participant without any port, and thus unable to interact with the outside
world by means of service calls.

_ - -7 <<service architecture>> T~
- Service System RN
L e e e e e e e e e e e e = AN
/ - — \
_ ~
{ Partx | PV _/) __ o !
N Serv PartY ,
~ ~_ - -
~ -
~ -

Fig. 8. A generic service architecture for a service system

In case of a structured participant P providing and using services there will
be also special parts, denoted by dashed boxes, representing the roles of the
participants external to P using or providing services to P.

The service architecture of a generic structured participant is illustrated in
Fig. 9. In this case, the roles of the subparticipants are shown as usual by box
(e.g., : Part X), whereas the roles of the external participants providing or using
the services of StructuredParticipant are shown by dashed boxes (e.g., extProv:
PartZ).

_ - <<service architecture>> T -
-7 StructuredParticipant ~ o
= - - - T = = = Prov— — — — — — — >
“ pro ——\\ cons -7 " \\
\' N
0 PartX |°---- C iServ ;- PartY |----- " :ServBis \
, -__- ~__- \
! |
S L eCons. !
\ | ! /
AR ! extProv : Partz , 4
~ L ! ~
~ -
~ ~

Fig. 9. A generic service architecture for a structured participant

An architecture configuration shows a snapshot of a service architecture at a
specific point in time. A configuration is presented by a UML object diagram. It
includes a set of participant instances and the services that they provide and use
at that particular time. Each service is is represented by a use of the collaboration
part of the definition of its contract. The links among them are bindings of the
collaboration.

4.4 How to produce a PreciseSoa model

Here, we present some guidelines to produce a PreciseSoa model of a participant
and thus also of a service system (recall that a service system is a particular case
of a structured participant) summarized by the activity diagrams in Fig. 10 and
11. These guidelines refine those presented in Sect. 3, and in Fig. ?? the refined
parts are shadowed. In general, we suggest first to produce an informal concep-
tual model (see Sect. 3), and later starting from it to produce the PreciseSoa
model.

/Model participant P v

@enlify the services that P provides and consumes)
SL (List of service names)
For all S in SL model Sy

(P is monolithic)

[P is structured]

Clden(ify the subparticipants of P)

| PL (List of subparticipant types) |

v

(For each P'in PL identity the services that i!)

provides and consumes (local services of P)

SL' (List of service names)

(For all S"in SL" model S;D (For all P"in PL model P',D

((Depict the participant type class for P)

Identify how the subparticipants of P work together
by providing and consuming services

(Model Service Architectu re@

®

/Model Service Architecture N

Depict a collaboration named as the
participant

role for each P'in PL
A4
Add a collaboration use for each]
f

(Add a part depicting a participant j

service provided and used by a pair o
participant roles

. é)

Fig. 10. How to develop a PreciseSoa participant model

(Model service s . ") (Model Service Interface
V

Depict a UML Interface having operations
corresponding to the in messages

i
@en(ify the messages exchanged by S)

Model Service Interface -
\

Identify the conversations between the Depict a UML Interface having operations
service user and the service provider c ing to the out

Model service contract
Depict a class stereotyped by <<service

\l/ interface>>, named as the service itself,
Identify the realm of S and how the using and realizing respectively the two
service interact with it interfaces defined before

N é J

Model service semantics 0

(Model Service Semantics h
. J
(Model Service Contract h W/
Depict a UML class extending the)
provided interface so that its instances
oL e G may describe the possible status of the
realm
possible conversation in term of in and 4 J
out messages between the service - v - -
provider and the service user Depict a UML Interface having operations
« ing to the out
Refactorize tr_|e produce_ sequence d_iagram Transform the sequence diagrams pan\
‘::'"9 the various combinators prowd:]tli t;V of the contract to describe the possible
the UML to present in a compact way all the modification of the realm associated
possible conversations with the received messages (be means of
action specifications), and add guards to
é the various messages to represent how
N J the realm status influence the choice of

which out messages will be sent Y,

e ,

Fig. 11. How to develop a PreciseSoa service model

5 Modelling Dealer Network System following PreciseSoa

In this section we present the model of the service system Dealer Network System
produced following the PreciseSoa method.

5.1 Service Architecture

-7 <<service architecture>> T~
P Dealer Network System S~ o
T e e N
-~ ~
7 ~N
- pr- . I ~
e dealer : Dealer | - - - - buver (: placeOrder). 2€"€7 _ ____ mfc : Manufacturer AN
~N
/ = - -7 . \
/ 1 1 \
/ ! 1 \
1 1

| %l 'S |
\ c': : @

c o /
\ @1 'S /

\\ P e -y ,
N (: GetShipStatus) (; RequestShipping) ’
~ I e //
~ =~ _.= el
~ . €SPop g~ ~ - = pPe _
-~ _ -
S~ shipper : Shipper | ~ -~

Fig. 12. Dealer Network System: Service Architecture

The service architecture of the Dealer Network System is shown in Fig. 12 and
in 13 (which presents an architecture configuration). The Dealer Network System
architecture depicts a community of participants providing and consuming ser-
vices for realizing the aims of the Dealer Network. There are three roles for the
participants in this architecture: dealer, shipper and mfc typed respectively by the
participant classes Dealer, Shipper and Manufacturer, they are involved in three
services: “Place Order”, “Get Ship Status” and “Request Shipping”. dealer plays
the role buyer (i.e., consumer) and mfc plays the role seller (i.e., provider) in ser-
vice Place Order. Instead, dealer plays role of the enquirer in service Get Ship
Status whose provider is the shipper. mfc plays the role of provider in service
Place Order, but in service Request Shipping, it plays a role as a consumer -
orderer precisely.

Fig. 12 illustrates the possible roles for participants in the high level view
of how they work together in the Dealer Network System. The three services and
the participants appearing in this diagram will be described by service and par-
ticipant models in the following subsections. Fig. 13 shows instead a possible
configuration of this architecture, where several participants of several types
play various roles using and providing services in a particular instant in the life
of the system; notice how at the same time several participants may use some
service, provided by the same or by other participants.

//" ‘\\
———————————— « : PlaceOrder - -------

-

se\\?" -

er, T TN
------------ « : PlaceOrder maManufacturerer

- buyer 77 "~ seller m2:Manufacturerer
dealer3:Dealer |- - - - - - - - - - « : PlaceOrder) -------
m3:Manufacturerer ~ =7 7 77~ shipper [EedexShipper
----- orderer_ : RequestShipping - - epel
T T -
1
i
1 - T = = . -
- > _ shipper |Express:Shipper
. orderer _ (: RequestShipping - - epel
1
:
— —_—— 1
dealera:Dealer enquirer /. responder I

——————————— \.GetShipStatui}————————————J

e —

Fig. 13. A Dealer Network System Architecture Configuration

5.2 Local Services

The Dealer Network System has three local services, precisely: “Place Order”, “Get
Ship Status” and “Request Shipping”, whose models are given in the following.

Service Place Order Fig. 14 shows the interface of the service Place Order.
It realizes and uses respectively the interfaces: OrderPlacer and OrderTaker, which
define the operations that provider and consumer implement to play their own
roles. The type of the provider role: OrderTaker is the interface including the op-
erations whose calls the provider seller will receive when enacting the service. The
type of the consumer role: OrderPlacer is the interface including the operations
whose calls the buyer will receive (correspondingly sent by the provider). The re-
civer of the order may confirm it, and the fact that an order is confirmed or not is
recorded in the boolean attribute confirm of the datatype OrderStatus. Moreover,
if the order is accepted, the buyer will receive further information about the
order represented by other attributes of the datatype OrderStatus, they are the
delivery date and the way bill number of the shipment. The buyers are identified
by elements of CustomerID.

Fig. 15 presents the Place Order contract. The collaboration states that the
role for the participant using the service is named buyer and is typed by the
interface OrderPlacer, whereas the role for the participant providing the service is
named seller and is typed by interface OrderTaker. Those parts are bound to fulfill
service Place Order following its contract. The sequence diagrams describe how

to use the service, i.e., which messages to send and which may be the possible
answers. The buyer may either send a quote request or place an order, and the
two sequence diagrams model these two cases.

Fig. 16 finally shows the Place Order semantics. The realm of the service is
characterized by the amount of product in stock, so the PlaceOrder_Realm class
has an attribute modelling the stock amount stock: int. The modified sequence
diagram for the case of placing an order shows that the order is confirmed only
whenever the ordered quantity is in stock, otherwise is cancelled, and after an
order has been accepted the stock is reduced by the ordered amount.

<<interface>> <<interface>>
OrderPlacer OrderTaker
quote(Quote) request_Quote(QuoteRequest)
order_Status(OrderStatus) place_Order(Order)
= «
<<use>> " <<provide>>
<<service interface>>
PlaceOrder
<<datatype>> <<datatype>> <<datatype>>
QuoteRequest OrderStatus Order

customerlID : CustomerID | | orderID : OrderID orderID : OrderlD
quantity : int providerID : ProviderID customerID : CustomerID
quoteDate : Date status : ConfirmationType orderDate : Date

WBN : WaybillINumber quantity : int

<<Enum>> deliveryDate : Date
ConfirmationType Wavybi
aybillNumber

confirmed <<datatype>> Y
cancelled Quote

qt{oteRequest : QuoteRequest CustomerID OrderiD

price : float
ProviderID Date

Fig. 14. Place Order model: interface

buyer : OrderPlacer

seller : OrderTaker buyer : OrderPlacer

seller : OrderTaker

request_Quote(QR)

place_Order(0)

T T T
| | |
hN | | |
| | 1
alt | alt |
| | | |
| [Q.quoterequest=QR] | | [OS.orderID = O.orderID] |
der_Status(O!
: quote(Q) : I order_Status(OS) :
I 1 | |
+ + | |
| | | |
1 1 I 1
- - <<service contract>> Tt -
- PlaceOrder N
7

ettt et A

\ <<use>> <<provide>>)

N buyer : OrderPlacer seller : OrderTaker e

~ -

Fig. 15. Place Order model: contract

PlaceOrderRealm

<<interface>>
OrderTaker
request_Quote(QuoteRequest)
place_Order(Order)

<<interface>>
OrderPlacer
quote(Quote)
order_Status(OrderStatus)

<<use>> ! <<provide>>
<sel interface>>
PlaceOrder
<<datatype>> <<datatype>> <<datatype>>
QuoteRequest o] Order

customeriD : CustomerlD
quantity : int
quoteDate : Date

<<Enum>>

orderlD : OrderlD
providerlD : ProviderID
status : ConfirmationType
WBN : WaybillNumber
deliveryDate : Date

orderID : OrderlD
customerlD : CustomerlD
orderDate : Date
quantity : int

ConfirmationType
confirmed
cancelled

<<datatype>>
Quote
:Q

E—

ProvideriD OrderlD

price : float

CustomerlD | Date

Fig. 16. Place Order model: semantics

Service Request Shipping Service Request Shipping provides the capability
to send a shipping request to a shipper in order to deliver goods to a customer
for a filled order.

Fig. 17 shows the interface of the Request Shipping service. The provided
interfaced contains a unique operation (request_Shipping(Request)), i.e., the ser-
vice has a unique in message, that will be used to request a shipping (con-
tain the information of the order, i.e., this is waybill number, and the sender
and receiver’s address); whereas the required interface contain two operations,
i.e., package_PickUp(PickUplnfo) and confirm_Delivery(Confirmation), corresponding
to two out messages to communicate the info on the pick up (pickup date and
an estimated delivery date) and to confirm the delivery (containing the delivery
date). Some obvious conditions relate the estimated delivery date, the expected
delivery date, the pick up date and the request date can be seen in several
dataypes types near the Request Shipping interface.

Fig. 18 shows the Request Shipping contract. In the sequence diagram to en-
sure that the package pickup message is sent to corresponding shipping request,
we require that the parameters R and PUlnfo in satisfy the condition R.wBN =
PUInfo.wBN, similarly for R and conf.

<<interface>>
ShipOrderer <<interface>>
package_PickUp(PickUpInfo) Shipper
confirm_Delivery(Confirmation) request_Shipping(Request)
SN <
<<use>>" " <<provide>>

<<service interface>>
Request Shipping

<<datatype>> <<datatype>> <<datatype>>
PickUplnfo Request Confirmation
WBN : WaybilINumber WwBN : WaybilINumber WBN : WaybilINumber
pickupDate : Date shipFrom : string deliveryDate : Date
estimatedDeliveryDate : Date | | shipTo : string
fee : float requestDate : Date
expectedDeliveryDate : Date | | waybillNumber
Date

Fig. 17. Request Shipping model: interface

We do not give the semantics of the service Request Shipping since to know
exactly why the shipper proposes a specific date for the pick up is of no interest
for the service user, while it is clear that who requires the shipping cannot cancel
the request once s(he) knows the delivery date.

Service Get Ship Status The interface and the contract of the service Get
Ship Status are shown in Fig. 19 and 20 respectively; similarly to the the service
Request Shipping we do not give its semantics.

orderer : ShipOrderer shipper : Shipper

: request_Shipping(R)

alt] |

: [R.WwBN=PUinfo.wBN and R.wBN=conf.wBN]|
: package_PickUp(PUinfo)
|
|

I
~J

|
|
|
confirm_Delivery(conf) |
]
|
|

[P
|
! -
_ - - <<service contract>> T-a -

P RequestShipping AN
e e s s xS \
I <<use>> <<provide>>]
\ orderer : ShipOrderer shipper : Shipper y

N

Fig. 18. Request Shipping model: contract

<<interface>> <<interface>>
Enquirer ShipperStatus
+shipmentStatus(ShipmentStatus) get_ShipmentStatus(WaybillNumber)
—_ oV
<<use>;‘~\\ _,,"<’<provide>>

<<service interface>>
Get Ship Status

<<datatype>>
ShipmentStatus

wbN : WaybillNumber

sP_lipped : boolean Date WaybillNumber
pickupDate : Date

estimatedDeliveryDate : Date

Fig. 19. Get Ship Status model: interface

The collaboration in Fig. 20 binds the two parts representing the consumer
and provider of service Get Ship Status. The consumer plays a role as a en-
quirer that is typed by interface Enquirer (defined in Get Ship Status interface
in Fig. 19). Enquirer includes an operation to receive the status of the shipment,
i.e., shipment_Status(ShipmentStatus).

The type of the provider role responder is ShipperStatus interface that contains
one operation get_ShipmentStatus(WaybillNumber) called by the consumer to enact
this service. If we could not find any suitable names for the roles, we may let them
have the same names as the interface themselves (shipperStatus: ShipperStatus for
example). The purpose of the service is resulting shipment status for the enquirer.
The status of the shipment will be contained in the datatype ShipmentStatus (see
Fig. 19). The order of messages that service Get Ship Status receives and sends
out is illustrated by the sequence diagram appearing in Fig. 20.

enquire : Enquirer responder : ShipperStatus

T
| getShipmentStatus(wBN)
I

T
|
1
T
alt] |
| [SS.WBN = VBN] }
: shippmentStatus(SS) }
1 1
1 1
_-" - <<service contract>> T~o -
Phd GetShipStatus BN
TS === === = = =" \
[<<use>> <<provide>> J
\ N enquirer : Enquirer responder : ShipperStatus ,
7
~ -

Fig. 20. Get Ship Status model: contract

5.3 Participant View

All the kinds of participants that provide and consume services in the Dealer
Network System are presented by the participant view show in Fig. 21 giving only
their participant classes (here we do not further model these participants, not
even we express if they are structured or monolithic). There are three kinds of
participant: Dealer, Manufacturer, and Shipper. Each participant (type) has ser-
vice ports and request ports for the services they provide and consume that are
stereotyped by <service>> and <request>>. Manufacturer participant is a service
provider for service Place Order, so it has a <service>> port typed by the ser-
vice interface PlaceOrder to provide the service through this port. Manufacturer is
instead a consumer of service Request Shipping, then it has a <request>> port
typed by the conjugate of the Request Shipping interface (~Request Shipping).

Similarly, Dealer is a consumer of the service Place Order provided by Manufac-

turer.
<<request>> <<participant>> <<request>>
: ~Get Ship Status Dealer : ~PlaceOrder
<<service>> <<participant>> <<service>> t < <participant>> <<service>>
<<request>>
: Get Ship Status] Shipper 1 RequestShipping : ~RequestShipping Manufacturer : PlaceOrder

Fig. 21. Dealer Network System: participant view

6 Modelling Office System following PreciseSoa

In this section we model the Office System described in Sect. 2 following the
PreciseSoa method introduced in Sect. 4.

6.1 Service Architecture

The service architecture of Office System shown in Fig. 22 presents the partic-
ipant roles of the system and which service they provide and consume. There
are six roles for participants: typed respectively by OfficecComponent, PrintingCen-
ter, EnglishCenter, ItalianCenter, FrenchCenter, and WebPublisher. In this architecture,
the participants typed by OfficecComponent play the consumer role to the services:
Print, Check French, Check English, Check Italian, and Publish on Web. Fig. 23
shows instead a possible configuration of the Office System.

_ - <<service architecture>> =~ _
_ -7 Office System ~ -
_______________________________ ~
-7 -7 N\ consumer consumer s ST s T ~
e " Print)= : Office Component | -------< < Publish on Web) ~
7 N ~ - ~ - N
’ ST o - T TR,
T o S,
/ ,',\ 5, = PN \\4\1‘
/ & E N NA
1 & g 2 %\ 1A
/ N § < AN
/ L Q g 8 AN .
: Printing Center ’ 1 \ : Web Publisher
/ . \
I //———\\ /, - T —_
. . - e
! { :Check Iltalian) (:Check English) " Check French)
\ < -~ ~ _— < -
\ — = = == e
\ o ! . : !
1 QJ 1
\ S 3! % 1
N 20 o 1
~ S S ! S 4
~ . -
~ . " - -
~ o : Italian Center : English Center : French Center -
- ~
~ - -

Fig. 22. Office System: service architecture

6.2 Local Services

Service Print The purpose of the Print service is to allow to print documents.

Fig. 24 shows the interface of Print. Fig. 25 depicts the Print service contract,
where the two roles writer and printer, typed respectively by the interfaces Writer
and Printer, are the consumer and the provider respectively. The Printer interface
contains three operations to enact the service, as shown in Fig. 24. The interface
Writer instead contains three operations corresponding to the three messages:
printed if the document printed successfully, notA4 if the page is not in A4 forma,t
and noPaper if the printer is out of paper. The messages exchanging between the

<<participant>>

<<participant>> consumer - T T~ <<participant>>
. z < - .
""""" o : Check Italian) _ s
< - S eq,
=== SLer
<<participant>> —— S~ —
<particip consumer g =~ <<participant>>
“““““ o : Check Italian)} -------1{ : 3]
~ _ - checker
<<participant>> _
R i consumer p - N X <<participant>>
___________ :Print printer | . printing Center
N -_ _ - T
<<participant>> consumer , - T~
- Office Component |- - - - - - - - - -~ Print ,j--------
~ - .
=== printer
<<participant>>
<<participant>>
<<participant>> - =) i Web Publisher
-off onsumer___, “publishon™ __publisher]
~_ Web _

Fig. 23. A Office System architecture configuration

parts that provide and use that service is represented by the sequence diagram
in Fig. 25. Fig. 26 shows the semantics of the Print service; here we can see,
e.g., that the message noPaper is truly motivated by the lacking of paper, and
that it is sent also in the case there is paper sufficient to print a fraction of the
document.

<<interface>> <<interface>>
Writer Printer
printed() reduce_Page()
notA4() print(Document)
noPaper() cancel()
<§j::3z2ii> <<“59§;\ R <<provide>> ~
isA4() : boolean - =
pages() : int <<service interface>>
Print

Fig. 24. Print model: interface

Check Italian (Check French, Check English) service There are three
services that supply capabilities to check the spelling and the grammar of a
text written in one of three specific languages: English, French and Italian (as

<<interface>>
Writer
printed()
notA4()
noPaper()

consumer : Writer printer : Printer

I print(D) J

alt]] |

| . |

| [not D.isA4(] notA4() |

I |

| |

1 1

alt :

: [true] reduce_Page() :

I 1

J L

| |

| ltrue] |

i cancel() N

| I

1 1

I 1

: [D.isA4(] noPaper() :

I 1

| |

1 4

| i |

: [D.isA40] printed() {

| |

L L

| |
e |

- <<service contract>> T~
7 Print =
e o o - - - -
\ <<use>> <<provide>>
N consumer : Writer printer : Printer
~

Fig. 25. Print model: contract

consumer : Writer printer : Printer

print(D)

<<interface>>

Printer
reduce_Page()
print(Document)
cancel()

Print_Realm
paper : int

<<datatype>>
Document

isA4() : boolean

pages() : int

! N
I e
alt)] |
: [not D.isA4() and D.pages < paper] :
: notA4() {
i}
alt |
|
[true] reduce_Page() :
A
|

paper =

.pages()
|
[true] cancel()

[D.isA4() and D.pages > paper]
noPaper()

[D.isA4() and D.pages < paper]

printed()

|
|
I
|
|
|
|
|
1
|
|
I
|
T
I
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
t

Fig. 26. Print model: semantics

described in Sect. 2). Here we give the model of the service Check Italian con-
sidering the Italian language, the models of Check French and Check English
are similar.

The interface of Check Italian is given in Fig. 27. The provider interface
Checker comprises two operations, i.e., check_Spelling(Text) and check_Grammar(Text),
they are two types of in message that this service can receive, one for spelling
checking, and the other for grammar checking. The user interface Editor comprises
three possible out messages that service may send out, i.e., spelling_Errors(SpellErrors)
if the service found any spelling error in the submitted text, grammar_Errors(GrammErrors)
if the service found any grammatical error in the text, and wrong_Language() if
the text is not written in the Italian language.

The contract of the service Check Italian, see Fig. 28, states that if it receives
a message check Spelling(T), then it may return only one of the two messages:
spelling_Errors(. ..), wrong_Language(), while if it receives check_Grammar(T), then
it may answer also grammar_Errors(...). We give two sequence diagrams for this
service contract to illustrates those two possible cases, see Fig. 28.

<<Interface>> <<interface>>
i Editor Checker
spelling_Errors(SpellErrors) check_Spelling(Text)
grammar_Errors(GrammeErrors) check_Grammar(Text)
wrong_Language()

. b
<<use>>)/ <<provide>>
<<service interface>>
Check Italian
<<datatype>> <;da:|a£ype>> <L<Enum>> <<dz}|t_atytpe>>
. pellErrors an_guage : ex
none() : boolean | | English whichLanguage() : Language
Italian checkSpelling() : SpellErrors
French checkGrammar() : GrammeErrors

Fig. 27. Check Italian service: interface

We do not give the semantics of the service Check Italian, since this service
does not depends on a realm and does not modify anything; moreover, there
is no sensible way to specify the correctness of a text expressed in the italian
language, and also if possible it will be of no use to anyone.

Service Publish on Web The consumers use the Publish on Web service to
publish web pages on the Internet.

Fig. 29 shows the interface of service Publish on Web. The role for the par-
ticipant using the service is named consumer and the role for the participant
providing the service is named publisher. In the collaboration in Fig. 30, they
appear again in two parts of the service contract and are bound to their types,
i.e. the Web Editor and Publisher interfaces respectively, as shown in Fig. 29. The
operations that are sent from the publisher to the consumer can be: wrongURL()

consumer : checker : consumer : checker :
Editor Checker Editor Checker

T T T T

| check_Spelling(T) | | check_Grammar(T) |

I Pl r 1

T T

alt | alt] |

: [T.whichLanguage=ltalian] : : [T.whichLanguage() = Italian and :

I spelling_Errors(T.checkSpelling()) { : T.checkSpelling().none()] :

| | | grammar_Errors(T.checkGrammar()) |

1) [P]

: [T.whichLanguage<> Italian] : : :

| wrong_Language() | | [T.whichLanguage() = Italian and |

:\ { : not T.checkSpelling().none()] {

I { : spelling_Errors(T.checkSpelling()) :

- _ _ | I

-) T~ r r

.- <<service contract>> ~ o | [T.whichLanguage() <> Italian] |

H N

s /_ ______ c Eec_k I_tall_an_ N : wrong_Language() :

/ T 1

\ <<use>> <<provide>> | |

« | consumer : Editor checker : Checker | , : {

N 7 |]

~ -

Fig. 28. Check Italian

service: contract

if the URL is wrong, notHTML() if the page is not written in HTML, serverNo-
tAvailable() if the requested server is not available at this moment, and published()
if the page has been published. Fig. 30 illustrates this service contract.

<<interface>>
Web Editor

published()
wrongURL()
notHTML()
serverNotAvailable()

‘\

\
<<use>>
\

<<interface>>
Publisher
publish_Web(Page, Url)
<

’ .
+ <<provide>>

<<service interface>>
Publish on Web

<<datatype>>
Page

<<datatype>>
Url

iSHTML() : boolean

iSWFF() : boolean

Fig. 29. Publish on Web service: interface

6.3 Participant View

There are six kinds of participants that provide and consume services in Office
System. They are represented by the classes stereotyped by <participant>> in
the participant view in Fig. 31 and named: ItalianCenter, EnglishCenter, French-
Center, PrintingCenter, OfficcComponent, and WebPublisher. Those participants re-
alize their interfaces by service ports and request ports that are stereotyped by

consumer : Web Editor publisher : Publisher

publish_Web(P,URL)

alt

[P.isHTML() and URL.isWFF()]
published()

[not P.isHTML()]
notHTML()

[not URL.isWFF()]
wrongURL()

[true] serverNotAvailable()

RN N A AN S SR S E— A7

|
|
t
|
|
!
|
|
|
|
|
|
|
I
J
|
|
|
I
|
=
|
|
I
|
T
|

- <<service contract>> ~
- Publish on Web SO

| <<use>> <<provide>>)
\ consumer : Web Editor publisher : Publisher ,

Fig. 30. Publish on Web service: contract

<service> and <request>>. The participant typed OfficecComponent is the unique
consumer and does not play any provider role in the system, since all its ports
are stereotyped by <request> and typed by the conjugate service interfaces of
the providers for corresponding services. For the participants that are of kind
of providers, their ports are stereotyped by <service>> and typed by the service
interface of the service itself. The participant typed PrintingCenter is provider for
the Print service, its port is stereotyped by <service>> and typed by the service
interface Print.

7 Design Model of Service system in Casl4Soa

In this chapter, we present our extension of CASL-MDL models that offers a
visual syntax to a subset of the CASL-LTL [?] formal textual specifications to
develop CASL4SOA as a formal visual notation used to model service systems
not only visually but also formally and effectively.

8 Overview of Casl4Soa

Based on CASL-LTL (an extension for dynamic systems of the algebraic spec-
ification language CASL, see [?]), CASL-MDL [?] has been developed as a non
objected-oriented visual formal notation. CASL-MDL offers a visual syntax to a

<<participant>> <<service>> <<§er\/_|ce>>
French Center : Check French : Print
<<request>>

: ~Check French 0 <<req:gstt>>
L ~FPrin
.<<request?> 0 <<participant>>
<<participant>> <<service>> : ~Check Italian Office Component <<service>>
Italian Center : Check Italian : Publish on Web
<<request>> [] |: <<request>>
: ~Check English . ~Publish on Web

<<participant>>

. << i >
English Center service>

: Check Italian

LIEIC]

Fig. 31. Office System model: Participant View

subset of the CASL-LTL formal textual specifications, precisely each CASL-MDL
model can be translated into a CASL-LTL specification.

In CASL-MDL we have a type diagram introducing the datatypes and the dy-
namic types, which are types of dynamic systems, that allow to model datatypes
and either simple or structured dynamic systems.

A dynamic system is seen as a labelled transition system, where the labels are
“elementary interactions” corresponding to the interactions of the system with
its context. Then, the behaviour of data and dynamic types is defined either
following a property-oriented style using logical formulas (of a first-order many
sorted branching time with edge-formulas logic) or constructively defining the
operation behaviour by conditional rules and the system behaviour by interaction
machines.

At the visual level the constructs of CASL-MDL have been defined reusing
the visual constructs of the UML, thus we can use the UML editing tools to
produce the CASL-MDL models.

Casr4Soa [?] (Common Algebraic Specification Language for Service Ori-
ented Architecture) has been developed as a profile of CASL-MDL with the aim
to provide an effective notation to model SOA systems. The profiling mechanism
used for defining CASL4SOA is similar to the profiling mechanism of the UML,
and it was inspired by it. Thus we use stereotyped CASL-MDL constructs (Ap-
pendix ??) to define the new CASL4S0A constructs. Moreover, each CASL4S0OA
model corresponds to a CASL-MDL model, that in turn corresponds to a CASL-
LrL specification (see Fig. 32), which has a well-defined formal semantics, thus
also CASL4SOA has a well-defined formal semantics.

CASL4S0A has been designed over SOA paradigm presented in Chapter 3,
and here we will use all the terminology defined in such chapter.

There are two kinds of CASL4S0A service models, constructive and property-
oriented. In a constructive model, the behavioural aspects of the services and
of the participants are expressed by means of the interaction machines (see Ap-
pendix ??), whereas in a property oriented model, such aspects are expressed
by means of first-order temporal logic formula (see Appendix ?7).

<<participant>>
Printing Center

< <participant>>
Web Publisher

LNt}

./FIGURE/translation.PNG

Fig. 32. Relationships among CASL4S0A, CASL-MDL, and CASL-LTL

In CAsSL4S0A, dynamic system denotes any kind of dynamic entities, i.e.,
entities with dynamic behaviours without making further distinctions, and are
formally considered as labelled transition systems, that we briefly summarize
below.

A labelled transition system is a triple (State, Label, —), where —C State x
Label x State is the transition relation.

A dynamic system is thus modelled by a transition tree determined by a
labelled transition system and an initial state sg € State. A dynamic type cor-
responds to the state of a labelled transition system, thus its values correspond
to dynamic systems.

The labels of the transitions of a dynamic system are named interactions
and are descriptions of the information flowing in or out the system during the
transitions, thus they truly correspond to interactions of the system with the
external world. The states of simple systems are characterized by a set of typed
attributes (precisely the states of the associated labelled transition system).

We use dynamic types to model services and participants.

9 Casl4Soa Constructive Service System Model

The form of the CASL4SOA constructive participant models is shown in Fig. 33
by means of a metamodel, whereas Table 77 shows the constraints defining the
well-formed models.

A service system, as said in Chapter 3, is a particular structured participant
neither offering nor using services, and thus without any service point. Thus a
CASL4SO0A constructive service system model is a special case of a participant
model for a participant without any port, thus neither offering nor using services.

A participant model consists of the definition of a participant type by means
of a type diagram including the definition of a dynamic type, and of the models
of the provided and used services. The dynamic type defining the participant
may be either simple (for the case of the monolithic participants) or structured
(for the structured participants), in this case the structured dynamic type defi-
nition will allow to represent its service architecture. The model of a structured
participant will include also the models of a set of participant types, its sub-
participants, and the models of the local services, i.e., the service used by its
subparticipants to interact among them.

A service system, as said in Chapter 3, is a particular participant neither
offering nor using services, and thus without any service point. Thus a CASL4S0A

Participant ModelC
subparticipants | name : string o gy———

2.+ | participant type : Type Diagram
I 1

Structured Participant | | Monolithic Participant ModelC

ModelC behaviour : Interaction Machine
Y 1 ’ 0 .
- ServiceModelC
local services name : string
Service System
ModelC ’
[1
Servicelnterface ServiceSemanticC

diag : Type Diagram stat : Type Diagram
behav : Interaction Machine

ServiceContractC

stat : Type Diagram
behav : Interaction Machine

Fig. 33. CASL4SOA constructive model: metamodel

constructive service system model is a special case of a participant model for a
participant without any port, thus neither offering nor using services.

The CASL-MDL dynamic type modelling a participant will be stereotyped by
< Participant>>, whereas in the case of service system the stereotype < ServiceSystem>>
will be used.

Participant Model

— All services have different names.

— All subparticipants have different names.

— A subparticipant must have at least a port to offer or use at least one
service.

— Connectors between two ports of two different participants must be labelled
by the name of a service that those participants offer and use.

— Many different connectors may leave or enter the same port of a participant
but all of them must be labelled with the same service.

— The services used to label the connectors must be already presented in the
model.

Service Model

— All the parameters of the interactions of a service interface must be typed
by datatypes.

— A service interface must have at least one input elementary interaction.

— If a service is named SN, then the simple system appearing in the contract
should be named SN_Contract and the one appearing in the semantic should be
named by SN_Semantics.

— There is only one initial state in the interaction machine representing service
behaviour.

CASL4S0A constructive model: Well-formedness constraints

Naming Convention

—In the names of the services and interfaces, each word should begin with a capital
letter (e.g., Place Order, OrderTaker).

—In the names of the interactions, word should be written in mixed case starting
with lower case. When there are more than two words in the name, use underscores
to separate them (e.g., ?_place_Order).

—The parameters of an interaction should be in upper case (e.g., QR).

—Names of datatypes must be nouns, and each word of the names should begin
with a capital letter (e.g., OrderStatus).

—The attributes of datatypes should be written in mixed case starting with lower
case (e.g., orderDate).

Table 3. Naming convention for CASL4SOA models

9.1 Service Model

The structure of the service model is shown as a part of CAsL4SOA Construc-
tive Model in Fig. 33 (together with Participant Model which is described in
Sec.9.2), and the associated well-formedness constraints are reported in Table 7?.
A CAsSL4S0A constructive service model consists of the service name, a service
interface, a contract and a semantics. As stated in Chapter 3, a service interface
provides the static information needed to interact with the service, the service
contract focuses on the protocol between the provider and the consumer of the
service, and the semantics allows to understand the functionalities provided by
the service to its users.

A service interface is an interface for a dynamic system, visually represented
by a box with the stereotype indication «Service Interface>> (see a generic service
interface shown in Fig. 34), it is named as the service itself and it defines the
elementary interactions needed to use the service, distinguished in input and
output interactions by a naming convention ?_yyyy (input) and ! xxxx (output).
The input elementary interactions model the requests sent to the service, whereas
the output ones model the answers that the service sent out to the user. They
are characterized by a name and a possible empty list of parameters.

A service contract in constructive style is represented by a simple dynamic
system stereotyped by <simpleSystem>> (see a generic simple system shown in
Fig. 35) and an associated interaction machine (see Fig.36), in which the be-
haviour of the service is modelled as seen at the service point where it is provided.

The simple system should extend the one used for modelling the interface
but without adding any new interaction, thus it will exactly the same elementary

<<Service Interface>>
ServiceName
?_inter(T1, ..., TK')
| outer(TT, ..., Tm'")
weelen)

Fig. 34. A generic service interface

<<simpleSystam==>
S5ys Name

attr1 : T1
atin : Tn
?7_inter(T1', ..., TK')

| outer(TT", ..., Tm")
|

Fig. 35. A generic simple dynamic system

interactions as the service interface, whereas it may have some new attributes,
which are needed to abstractly model the relationships between the in and out
messages. The interaction machine modelling a service contract should follow a
specific pattern to mimic the informal conceptual description of a service contract
proposed in Chapter 3 to illustrate the fact that: the service may receive initially
possible requests, then it will answer in many different ways (even going in a
final state), after that the service is ready to receive other requests, then answer
them. A visual generic schematic example of an interaction machine is given in
Fig.36, and for further description, see Appendix ?7?).

The realm of a service is the part of the real world affected and known
by the service itself. The semantics of a service describes the effects of the
requests received by the service itself (in messages) on its realm, and how the
realm status determines the answers sent out by the service itself (out messages).
The semantics of a service in constructive style is given by a simple dynamic
system extending the one used for the service contract (again without adding
new interactions), and the behaviour of this system is modelled as usual by
means of an interaction machine.

9.2 Participant model

A participant type is expressed as a CASL-MDL dynamic type (see Appendix ?7?)
stereotyped by <Participant> (see generic participant shown in Fig. 37), the
ports of which are characterized by service interfaces to indicate that a partici-
pant of that type provides or consumes a service. The ports are used to structure
the elementary interactions of a dynamic system and to define the cooperation
inside the structured dynamic systems.

7_input_Interaction(} | [guard] | / expression ?_input_Interaction{) | [guard] | / expression

?_input_Interaction() | |_output_Interaction() |
[guard] | / expression

[guard] | / expression

State 3

?_input_Interaction() | |_output_Interaction() |

; ?_input_Interaction() | !_output_Interaction(} |
[guard] | / expression

[guard] | / expression

Fig. 36. A generic schematic example of an interaction machine

If a participant is offering a service S, the port where S is offered is typed by
the interface of S, whereas if it is using a service S’ throughout a port, then such
port is typed by the conjugate of the interface of S’. Recall that the conjugate of
an interface I is denoted by ~I, and the elementary interactions of ~I are those
of I where the input and output types are swapped.

The participant type and all the needed datatypes are collected in a type
diagram.

In case of a monolithic participant, a generic model is given in Fig.37, its
behavior should be expressed by means of an interaction machine (a generic
interaction machine is given in Fig.36).

<<Participant>>
Participant Name

—O

Service 1

~Service 2

Fig. 37. A generic participant

—

_ lguard] | / expression

?_input_Interaction() | !_output_Interaction(} |

In case of a structured participant, the corresponding CASL-MDL dynamic
type will be a structured dynamic type (see Fig.38), and its definition will allow
to express the service architecture of the participant itself.

<<Participant>>
Structured Participant Name

~Service B—[

iP1 : innerPart1

Local Service X
_________ iP2 : innerPart3

|
I Local Service ¥
|
|

Service B

I

i

|

|

_ |
J<---=--- iP3 : innerPart3 :
|

I

I

I

i

I

Service B

Fig. 38. A generic structured participant

As described in Chapter 3 a service system is a special case of structured
participant without any port, and we will use the stereotype <«ServiceSystem>>
(see Fig.39) instead of <Participant>> for denoting the corresponding CASL-MDL

structured dynamic type.

<<ServiceSystem>>

SystemName
Part1 : Participant type 1 Part2 : Participant type 2
n S0]
Service B .= i
Service A - Service C/
I

Fig. 39.

A generic service system

10 Casl4Soa property oriented model

The structure of the CASL4SOA property oriented models is shown in Fig. 40.
The form of these models is similar to the one of the constructive models shown
in Fig. 33, but now the behaviour of the dynamic systems is modelled by means
of a set of logical formulas, instead of an interaction machine. The constraints
defining the well-formed models are the same as the constructive models, shown
in Table ?7.

Participant ModelP

subparticipants name : string ’—
P P participant type : Type Diagram

1
Structured Participant Monolithic Participant ModelP
ModelP behaviour : Constraint [0..%]

0.*
? L. ServiceModelP
name : string

¢

[1
Servicelnterface ServiceSemantisP
diag : Type Diagram stat : Type Diagram
behav : Constraint [0..%]

local services

Service System ModelP

ServiceContractP
stat : Type Diagram
behav : Constraint [0..%]

Fig. 40. CAsL4S0A property oriented model: metamodel

A service contract in property-oriented style is represented by a dynamic type
whose behaviour is specified by a set of constraints on the type itself, i.e., by a
set of temporal formulas described in Appendix ??. Similarly the semantics of a
service in property-oriented style is given by a simple dynamic system extending
the one used for the service contract, and the behaviour of this system is modelled
again by means of a set of constraints.

A generic example of a formula is presented as following:

[in_any_case] [sometimes — always] [path_form] = [eventually — always —
next [[path_form]

The formulas comprise first-order logic combinators, together with temporal
combinators (for a path formula) to address whether a property is satisfied in
states of a path from a given state. The form of formulas should conform to a
grammar structure defined in Appendix ?7.

11 How to develop a Casl4Soa model

Following the indications of Chapter 3 (see Fig. ?? and ?7), we give first a
conceptual model of the service system of interest, and then model all the parts
using CASL4S0A; all the steps are summarized in Fig. 41.

Recall that a service system is a particular structured participant neither
offering nor using services, we assume that the service system being built is the
first considered structured participant of type P (see activity named Model
participant type P in Fig. 41), then it may include a number of monolithic
participants and structured participants, and a number of services.

Identifying the services that the subparticipants of P provide and consume
is the first steps.

To model a service S in CASL4S0A, all the steps are shown in the actions of
the activity named Model service S in Fig. 41. Those actions are described in
details as following:

Give the simple dynamic type representing the interface of S

What to do

Define set of input and output interactions for a simple dynamic system
representing interface of S. The interactions are either of kind input or output.
Define datatypes needed to type the elements of interface.

What is supposed to be clear before building interface of S

— The specific requests that service S will receive from the users.
— The specific responses that service S may send to the users for corresponding
requests.

The composition of S interface

— Name of S interface
— The elementary interactions of kind input and output.

Building steps

1. Use CASL-MDL simple dynamic type with stereotype <servicelnterface>> to
define S interface.

2. Name S interface by the name of S itself (suggesting the purpose of the
service)

3. Build input interactions based on the requests to service S, give them names
(starting with convention ?_) and define the necessary parameters.

4. Build output interactions based on the requests to service S, give them names
(starting with convention !_) and define the necessary parameters.

5. Use construct Datatype to define the elements of S interface if they are not
of primitive type.

Note:

— The name of a input interaction should contain and start with a verb.
— The input interactions should be listed before the corresponding output in-
teractions.

/Model participant type P 9

ldentify the services that the subparticipants of type P
provide and consume

| SL (List of service names) |

Forall 5in 8L model 5

[P is monolithic]

[P is structurad]

C |dentify the subparticipant types)

| PL {List of subparticipant types)

\/

For each participant in PL identity the services that it
provides and consumes (local services of P)

| SL" (List of service names) |

*

v v

(Forall in L" model S) (For all P in PL model P)

ldentify the (roles for) subparticipants of P and how they work together
by providing and consuming services

\

Give the structured type representing the paricipants of type P, its
structure will describe the service architecture of such participants

®
4

C Give the simple dynamic type representing the interface of S)

'rM odel service S

Give the simple dynamic type representing the contract of S by
extending the one representing its interface, add attributes if
there is the need to represent the session state, then give the

Interaction machine
S
Give the simple dynamic type representing the realm of of S by
aextending the cne representing its contract, add attributes
needed to represent the realm state, then give the Interaction
machine refining the one representing the contract

o

Fig. 41. How to develop a CASL4S0A model

Give the simple dynamic type representing the contract of S
What to do

Extend the simple dynamic type that represents the interface of S, add at-
tributes if needed to represent the session state.
What is supposed to be clear before building the contract of S

— The interface of S.
— The attributes needed to model the activities of S providers and to express
the realm of the service.

The composition of S contract in terms of a simple dynamic type

— Name of S contract (named with extension _Contract).
— Some attributes determining the internal states of the dynamic system repre-
senting S contract, and the elementary interactions as defined in S interface.

Building steps

1. Use CASL-MDL simple dynamic type with stereotype <simpleSystem>> to
define S contract.
2. Name the simple dynamic system by S name with extension _Contract, and
insert the elementary interactions that are predefined in the interface of S.
3. Insert attributes representing the session state and type them by datatypes/primitive

types.

Give the interaction machine of S contract

What to do

Build interaction machine of S contract.

What is supposed to be clear before building an interaction machine of S
contract

— The possible states of the simple system when S receives a specific request
and when S issues the responses.

— The possible activities in the interactions of S.

— The conditions for the occurrence of each interaction, i.e the guards of the
arc.

— The parameters exchange between the interactions of S.

The pattern of an interaction machine of S contract

— An initial state.

— The notes representing the possible interaction states of simple dynamic
system representing S.

— The arcs representing the possible transitions of simple dynamic system rep-
resenting S, labelled by an interaction occurrence, a guard and an effect in
the form of interact-occur [guard], where interaction-occur may be an input
interaction and an output interaction that are defined in S interface.

— A number of final states according to a number of possible ends of S behav-
iors.

Building steps

—_

. Start the graph with an initial state

. Build the arc for the first input interaction.

3. Define and name the next states of the simple dynamic system representing

S when S receives the requests or processes the responses.

4. Define the attributes of the data of the input interaction and their possi-
ble values to build the boolean expressions for the guards of the following
transitions.

. Corresponding to the specific guards, build the next arcs for the following
transitions.

6. Mark the points where the behaviours end in final states.

[N)

ot

Note:

— An interaction machine may have any number of final states.

— Whenever there is an arc with a condition there should be also the arc with
opposite condition.

— If no condition is satisfied for an elementary interaction, the matching inter-
action will never be matched.

Give the simple dynamic type representing the realm of S

Model interaction machine of a semantics

What is supposed to be clear before building an interaction machine in a
semantics

— The service contract
— The domain of the value of the simple dynamic system attributes.
— The effect of the activities of the simple dynamic system.

The pattern of an interaction machine in a semantics

— An initial state.

— The notes represent the possible interaction states of the system.

— The arcs represent the possible transitions of the system, labelled by an inter-
action occurrence, a guard and an effect in the form of interact-occur [guard]
/ effect, where interaction-occur may be a input interaction and a output
interaction that are defined in the provided service interface, the [guard] is
the boolean expression built over the simple dynamic system attributes, and
the effect is the action over those attributes.

— Final states (also none).

Building steps an interaction machine in a semantics
On the basis of the provided interaction machine of the service contract,

1. Create the arcs to define the initial value for the simple dynamic system
attributes if any.

2. Supplement the possible value of the attributes of the simple dynamic system
to create the guard for the transitions.

3. Define the effect of the interactions over the simple dynamic system at-
tributes to create the effect for the transitions if any.

Note:

— The main difference between the service contract and the semantics is the
presence of the values of the Simple system attributes in the effect of the
transitions.

Model participant P

A-Model monolithic participant P

What to do

Define the monolithic participant P and identify the services that P provides
and consumes

Building steps

— Use CASL-MDL simple dynamic type with stereotype < Participant>> to define
P, name this simple system with the name of P.

— Create a port with a lollipop for each service that P provides, name this port
by the service name.

— Create a port with a cup for each service that P consumes, name this port
by the service name starting with conjunction ~.

B-Model structured participant P

What to do

Identify all subparticipants of P and the local services that they provides and
consumes.

Building steps

— Use a structured system (i.e., CASL-MDL structured dynamic type) with
stereotype <Participant>> to define P, name this structured system by the
name of P.

— Use a subsystem to define each subparticipant. Insert them into the struc-
tured system P.

— For each subparticipant, create a port for a service that it offers or uses.

— Connect the pair of participants involved in a service by a connector labelled
by the name the service.

— Create a port for participant P for a service that it provides (a port having
a lollipop) or consumes (a port having a cup). Connect this port to the cor-
responding port of subparticipant which provides or consumes this service.

Model structured participant P as service architecture of the ser-

vice system
A service architecture is represented by a CASL-MDL structured system of a

number of subsystems.
What is supposed to be clear before building a service architecture:

— All the participant types of the service system.
— All the services of the system.

The composition of the service architecture
A structured system stereotyped <serviceArchitecture>> includes:

— The participant types are represented by subsystems, on which the ports are
the points they offer or use the service.
— The connectors between the participants.

Building steps for a service architecture:

— Use a structured system (i.e., CASL-MDL structured dynamic type) with
stereotype <Service Architecture>> to define P, name this structured system
by the name of service system.

— Use a subsystem to define each subparticipant. Insert them into the struc-
tured system P.

— For each subparticipant, create a port for a service that it offers or uses.

— Connect the pair of participants involved in a service by a connector labelled
by the name the service.

Note:

— The connector leaves and ends at the ports of the participants.
— The interactions occurring among the participants are in terms of services.

Model service S in property oriented style

A-Build the contract of service S in property oriented style

The contract of S in property oriented style characterized by formulas ex-
presses all possible occurrences of the interactions in the particular conditions.

What is supposed to be clear before building the contract of service S in prop-
erty oriented style

— The protocols to be followed by the providers and the consumers of the
service, what they guarantee to each other and what they expect in terms
of dynamic behaviour.

— What will happen when the service receives a specific request.

— What conditions match each interaction and how they match with each
other, such as what conditions for a request to be accepted, or what condi-
tions for a response be implemented.

— The attributes of the data in a request sent to the service by the consumers,
what is true or not.

— The relationships between the interactions (the order, the dependency and
the priority)

The composition of S contract in property oriented style

— A set of formulas expresses all possible cases of the occurrence of the in-
teractions defined in the provided service interface according to the specific
matching conditions.

Building steps

1. Define the context of the transition of the Simple system to select the quan-
tifications on paths and quantification on states if any.

2.

Define the possible values of the parameters and the attributes of the data
of the specific input interaction, combine them with this input interaction
to build the premise of the formulas.

. Based on the relationships between the conditions and the interactions, be-

tween the input interactions and the output interactions, use the logic com-
binators and given quantifications to build the conclusion of the formula,
such that each formula may expresses all possible interactions of the system
corresponding to each specific premise part.

B-Model the semantics of service S in property oriented style
The semantics of S in property oriented style not only expresses all possible

occurrences of the interactions in the particular conditions but also the possible
internal transitions associating with the effect of the transitions if any.

What is supposed to be clear before building the semantics of S in property

oriented style

What contributes the answer of the service.

What is examined, controlled, affected by the service itself.

The provided attributes of the simple system that can determine its internal
states, the internal actions over those attributes.

The effect of the request sent to the service itself.

The effect of the response to the service itself.

The content of S semantics in property oriented style

A set of formulas expresses all possible cases of the occurrence of the in-
teractions defined in the provided service interface according to the specific
matching conditions; express the internal states of the simple system and
the internal actions over the simple system attributes associating with such
interactions.

Building steps

1.

On the basic of the premise parts of the provided formulas in the service
contract in property oriented style, combine them with the possible prop-
erties of the attributes of the simple system to create premise parts for the
formulas.

. Corresponding to the premise parts, create the the conclusion parts of the

formula for the occurrences of the interactions and supplement the effect of
the transitions if any.

. Create necessary formulas to define the conditions for the simple system

attributes to guarantee the realization of the transitions.

Note: The effect of the transition is usually attached with the corresponding

interaction by logic combinator AND.

12 Dealer Network Model in Casl4Soa

In this section, we model the Dealer Network using CASL4S0A, first following the
constructive style and later following the property-oriented one. The description
of Dealer Network case study has been given in Sect. 2.1.

The Dealer Network is a service system, and thus is a special structured par-
ticipant without ports for offering and consuming services. The Dealer Network
CAsL4S0A model, in both styles, is thus a special case of participant model
consisting of:

— the definition of a dynamic type stereotyped by <« ServiceSystem>> correspond-
ing to the Dealer Network and named DealerNetwork, by means of a type dia-
gram including such type; DealerNetwork is a CASL-MDL structured dynamic
type (thus the definition of this type will also express the service architecture
of the Dealer Network);

— the models of the local services, that are Place Order, Get Ship Status, and
Request Shipping;

— the models of (the types of) its subparticipants, that are Dealer, Manufacturer,
and Shipper.

12.1 Dealer Network Model in Casl4Soa: constructive style

<<Service System>>
DealerNetwork

Place Order
_______________________ :Manufacturer
:Dealer

PR
J,'g'\@@\

lg_\%\ . e
g R Gl
c%& u [

Fig. 42. DealerNetwork type

DealerNetwork type DealerNetwork, the dynamic type for the service system cor-
responding to the Dealer Network, is shown in Fig. 42 by a box (the dynamic
type icon of CASL-MDL) stereotyped by <ServiceSystem>> to express that it is
a service system. Recall that in CASL4S0A, we denote the participants of a ser-
vice system (as well as the subparticipants of a generic structured participant)
by subsystems in the structured system stereotyped by <ServiceSystem>> (stereo-
typed by <Participant>>). Each subsystem (depicted by a box) represents a role
for (sub)participants of a specific type (the type name is depicted in the box

after the colon). Moreover, the fact that a (sub)participant interact with an-
other (sub)participant by means of a service is shown by a dashed arrow going
from the port of who uses the service towards the port of who provides it. Thus
Fig. 42 shows also the service architecture of Dealer Network in CAsL4SoA. We
can see that there are several participants of three different types Dealer, Manu-
facturer, and Shipper. Each participant has a number of ports to indicate that it
provides or consumes various services. For example, the participants typed by
Shipper have two ports for the two services that they provide, they are Get Ship
Status and Request Shipping. The dashed arrows entering in the Shipper ports are
labelled by the names of the services that it provides.

Local Service Models

Service Place Order

./FIGURE/PlaceOrderInterfaceC.PNG

Fig. 43. Place Order Service: interface
1

Service Interface The interface of service Place Order, shown in Fig. 43, is a
type diagram that contains a dynamic type named Place Order with stereotype
<servicelnterface>> modelling the the service interface itself, and the definitions
of the datatypes needed to type the parameters of its interactions.

The interface of service Place Order consists of four interactions: ?_request_Quote
and ?_place_Order of kind input, and !_quote and !_order_Status of kind output. The
service can receive the quote request from the buyers by interaction ?_request_Quote
with a parameter typed by the datatype QuoteRequest, then the service may re-
spond with the quote contained in a parameter typed by datatype Quote of the
output interaction ! quote. When the service receives the request to place an
order from the buyer by the interaction ?_place_Order, it will respond by commu-
nicating the status of the order by means of the interaction ! order_Status. The
datatype OrderStatus contains a boolean attribute confirmed to record the fact
that the order has been confirmed or not. Moreover, if the order is confirmed,
the buyer will receives further information about the order contained in the other
attributes of OrderStatus, they are the providerID of the order, the delivery date of
the shipment, and the wBN (waybill number) of the shipment. The identification
of the buyer is defined by the attribute customerID in the definition of datatype
QuoteRequest and Order.

<<simpleSystem>>
PlaceOrder_Contract
cQr : QuoteRequest
cO : Order
?_request_Quote(QR : QuoteRequest)
I_quote(Q : Quote)
?_place_Order(O : Order)
I_order_Status(OS : OrderStatus)

?_request_Quote(QR) / ?_place_Order(0) /

cQr=QR c0=0
Received Quote Received Order
Request
!_quote(Q) I_order_Status(0OS)
[Q.quoteRequest=cQr] [0S.orderlD=cO.orderID]

Fig. 44. Place Order service: contract (constructive style)

Service Contract The contract of service Place Order is represented by the sim-
ple dynamic system PlaceOrder_Contract and the interaction machine shown in
Fig. 44; this dynamic system has the same interactions of the one modelling
the service interface, and all of them will appear on transitions between of this
interaction machine. The interaction machine expresses that the service may
receive two requests: the quote request and the order placement from the con-
sumers, through the two transitions leaving the state Ready labelled respectively
by ?_request_Quote(qr:QuoteRequest) and ?_place_Order(O). The attribute cQr of the
simple dynamic system allows to store the value of the parameter quote re-
quest QR; similarly, the attribute cO stores the order O. Those values are used
in the transition guards to determine the cases when the interactions may hap-
pen. For instance, to guarantee that the quote of each quote request will corre-
spond to such request, the guard for the output interaction ! quote(Q) should be
[Q.QuoteRequest=cQr].

Semantic View The semantics of service Place Order is modelled by the sim-
ple dynamic system PlaceOrder_Semantics and the interaction machine shown in
Fig. 45. In this example, the interaction machine of the semantics has a similar
shape to the one of the service contract (see Fig. 44), however it takes also into
account the information about the realm. In this case, the quantity of product
in stock is this information, thus we introduce attribute stock in system Place-
Order_Semantics. The interaction machine in Fig. 45 models that, if the ordered
quantity is greater than the product quantity in stock, the order will be can-
celled; otherwise the order will be confirmed, and the product quantity in stock
will be reduced by the ordered quantity.

<<simpleSystem>>
PlaceOrder_S

N
ICS

cQr : QuoteRequest
cO : Order
stock : int

?_request_Quote(QR : QuoteRequest)
!I_quote(Q : Quote)
?_place_Order(O : Order)
!_order_Status(OS : OrderStatus)

[N=0] / stock=N

[K+stock=0] /
stock=stock+K

?_request_Quote(QR) /
cQr=QR

?_place_Order(0O)
/ c0=0

Received Quote
Request

(

Received Order Request]

I_quote(Q)

[Q.quoteRequest=cQr] !_order_Status(OS)

[cO.quantity>stock and
OS.orderID=cO.orderID
and OS.status=cancelled]

!_order_Status(OS)
[cO.quantity=stock and
0OS.orderID=cO.orderID and
0OS.status=confirmed] /
stock= stock@pre-cO.quantity

Fig. 45. Place Order service: semantics (constructive style)

Service Request Shipping Fig. 46 shows the interface of the service Request Ship-
ping. The service provides a means to require a shipping request by ?_request_Shipping(R:Request)
and it can respond the two possible results, one for package packing and another
for confirmation of delivery, in !_package_PickUp(PP:PackagePickUp)
and !_delivery_Confirmation(DC:Confirmation).

<<Service Interface>>
Request Shipping
?_request_Shipping(R : Request)
!_package_PickUp(PP : PackagePickUp)
I_delivery_Confirmation(DC : Confirmation)

Request PackagePickUp Confirmation
wBN : WaybillNumber wBN : WaybillNumber wBN : WaybilINumber
shipFrom : string pickupDate : Date deliveryDate : Date
shipTo : string estimatedDeliveryDate : Date
requestDate : Date fee : float
expectedDeliveryDate : Date WaybilINumber

Date

Fig. 46. Request Shipping service: interface

<<simpleSystem>>
Request Shipping_Contract
cSr : Request
puDate : Date
?_request_Shipping(R : Request)
!_package_PickUp(PP : PackagePickUp)
I_delivery_Confirmation(DC : Confirmation)

?_request_Shipping(R) / cSr=R
Received Request

|_packgage_PickUp(PP) [PP.wBN=cSr.wBN and
PP.estimatedDeliveryDate <cSr.expectedDeliveryDate] /
puDate=PP.pickupDate

[Delivered]

!_confirm_Delivery(DC) [DC.wBN=cSr.wBN and
DC.deliveryDate>puDate]

®

Fig. 47. Request Shipping service: contract (constructive style)

Service Get Ship Status Fig. 48 shows the interface of the service Get Ship
Status. The service provides a means to require the status of a shipment by
message ?_get_ShipmentStatus(W:WaybillNumber) and it can respond the result in
I_shipmentStatus(SS:ShipmentStatus).

./FIGURE/GetShipStatusInterfaceC.pdf

Fig. 48. Get Ship Status service: interface

./FIGURE/GetShipStatusContractConstructive.pdf

Fig. 49. Get Ship Status service: contract (constructive style)

The semantics is not very interesting and we do not describe the realm of
the service, since that should include all the situations of the ships and of the
sea and of the harbors, etc., so we should not present it.

Participant models The models of the three types of participants of Dealer
Network (Dealer, Manufacturer, and Shipper) are shown in Fig. 50, to be more
precise in such figure we show only the three type diagrams defining the three
corresponding dynamic types stereotyped by <Participant>>, while for simplicity
we do not duplicate the models of the services that they offer and use, since
they have been already presented in the part about the local services of Dealer
Network. We do not add any other information on these three participants,
since we do not know anything other on them (e.g., if they are monolithic or
structured, and what is their behaviour). CASL4SOA allows also these kind of
specifications

<<Participant>>
Dealer

~Get Ship Status)—1 — ~PlaceOrder

<<Participant>>
Shipper

Get Ship Status ~Request Shipping

<<Participant>>
Manufacturer

Request Shipping PlaceOrder

Fig. 50. Dealer Network service system: participant models

12.2 Dealer Network Model in Casl4Soa: property-oriented style

The CaAsrL4SoA Dealer Network model made following the property-oriented
style has the same structure of the constructive one presented in subsection
12.1, the only different parts are the definitions of the contracts of the three
services (Place Order, Get Ship Status and Request Shipping) and of the semantics
of Place Order. In this case they are defined by means of sets of constraints, i.e.,
set of temporal logic formulas. We present these contracts and this semantics in
Fig. 51, 53, 54, and 52 respectively.

Fig. 51 presents the contract of service Place Order in property oriented style.
The first formula expresses that whenever (in_any_case) the service receives a
quote request, it will always (always) respond with a corresponding quote. The
second formula expresses that whenever the service receives an order request, it
will always respond with a corresponding order status which includes the boolean
attribute confirmed. The correspondence is guaranteed by Q.quoteRequest=QR.

In the property-oriented style, the semantics of service Place Order is repre-
sented by a set of formulas (see Fig. 52). The first formula is the same as the

in_any_case always
?_request_Quote(QR) =
3Q:Quote « (Q.quoteRequest=QR A eventually !_quote(Q))

in_any_case always
?_place_Order(O) =
30S:OrderStatus o (OS.orderID=0.orderID Aeventually !_order_Status(OS))

Fig. 51. Place Order service: contract (property-oriented style)

in_any_case always
?_request_Quote(QR) = 3 Q:Quote « (Q.quoteRequest=QR A eventually !_quote(Q))

in_any_case always
(7_place_Order(O) A O.quantity< stock) =
3 0S:OrderStatus o (OS.orderlD=0.orderlD A OS.confirmed A
eventually (!_order_Status(OS) A stock=stock@pre-O.quantity))

in_any_case always
?_place_Order(O) A O.quantity>stock =
3 OS:OrderStatus « (OS.orderID=0.orderID A not OS.confirmed A
eventually !|_order_Status(OS))

in_any_case always
3 Kiint e (K+ stock> 0 A eventually stock = stock@pre +K)

Fig. 52. Place Order service: semantics (property-oriented style)

first one in the service contract (see Fig. 51), because the quotation does not
depend on the service realm. The second formula expresses that if the ordered
quantity is less than or equal to stock, then the order will be confirmed, and
an order status with attribute confirmed equal to true will be sent to the buyer;
stock=stock@pre-O.quantity expresses that the stock will be reduced. Otherwise,
as expressed by the third formula, if the ordered quantity is greater than stock,
the order will be cancelled, and an order status with attribute confirmed equal to
false will be sent to the buyer. The last formula states that the stock can always
be modified adding or removing goods.

Fig. 54 shows the contract in property style of service Get Ship Status. It
contains formula expressing that whenever the service receives a request for
status of a shipment, it will respond the information that exists.

in_any_case always
?_request_Shipping(R) =
(eventually 3 PP:PackagePickUp o

(PP.wBN=R.wBN A

PP.estimatedDeliveryDate < R.expectedDeliveryDate A

I_package_PickUp(PP))

A

eventually 3 DC:DeliveryConfirmation o
(DC.wBN=R.wBN A
DC.deliveryDate > PP.pickupDate A !_confirm_Delivery(DC))

Fig. 53. Request Shipping service: contract (property oriented style)

in_any_case always
?_get_ShipmentStatus(W) =
eventually 3 SS:ShipmentStatus « (SS.wBN=W A !_shipment_Status(SS))

Fig. 54. Get Ship Status service: contract (property oriented style)

13 Casl4Soa Model of Office System

In this section, we model the Office System using CASL4SOA, first following the
constructive style and later following the property-oriented one. The description
of the Office System case study has been given in Sect. 2.2.

The Office System is a service system, and thus is a special structured par-
ticipant without ports for offering and consuming services. The Office System
CAsL4S0A model, in both styles, is thus a participant model consisting of:

— the definition of a dynamic type stereotyped by <ServiceSystem>> correspond-
ing to the Office System and named OfficeSystem, by means of a type diagram
including such type; OfficeSystem is a special case of a CASL-MDL structured
dynamic type (thus the definition of this type will also express the service
architecture of the Office System);

— the models of the local services, that are Print, Check Italian, Check French,
Check English and Publish on Web;

— the models of (the types of) its subparticipants, that are PrintingCenter, En-
glishCenter, ItalianCenter, FrenchCenter, WebPublisher, and OfficeComponent.

13.1 Casl4Soa constructive model of Office System

OfficeSystem The type OfficeSystem is defined by the type diagram shown in
Fig. 55. It is a structured system that is made participants of six different types
providing and consuming five different services. The definition of the OfficeSystem
type gives also the architecture of the service system OfficeSystem, showing which
(roles for) participants of the various types use which services provided by which

<<Service System>>
Office System

: Office Component

qah _ -~ , ~ P,
c\\ec\ﬁ\faf\\’ - \ AN %//Ir/,

o5

\

4"‘»
NI
\

N

N

: ltalian Center &

s

s

\
z N : Web Publisher
: French Center : Printer Center
: English Center

Fig. 55. Office System: service architecture

%
N
Check English
7 AW

i

other (roles of) participant types. The fact that a participant uses a service
provided by another one is shown by means of a dashed arrow going from the
user to the provider and labelled by the name of the service. For example, we can
see that OfficecComponent uses the Print service provided by the PrintingCenter, also
it is clear that in this service system the participants typed by OfficecComponent
uses the services provided by the participants of all the other types, and that
the latter do not interact among them.

Local Service Model

<<Service Interface>>
Print
<<DataType>> Z_print(D : Document)
Parament ?_reduce()
- — ?_cancel()
pages(D : Document) : int 1 printed(
<<pred>> isA4(D : Document) rsoPaperO
1_noA4()

Fig. 56. Print service interface

Service Print The interface of service Print is shown in Fig. 56. Notice that also
the datatypes defining the parameters of the in and out messages are defined
in this type diagram, for example Document defines the printable documents;
it contains an operation pages and a predicate isA4 returning respectively the
number of pages of the document and the indication if the size of its pages is
equal to A4.

Fig. 13.1 presents the contract of the service Print by means of a simple
system and of an associated interaction machine. The interaction of this simple
system are exactly the interactions appearing in the interface of the service define
din Fig. 56, which correspond to the messages received and sent by the service;
all of them appear at least on a transition of the interaction machine.

<<Service Interface>>
<<DataType>> Print
ECINIENT n ?_print(D : Document)

pages(D : Document) : int ? reduce()
<<pred>> isA4(D : Document) :7_cancel()

!_printed()

!I_noPaper()

I_noA4()

<<Simple System>>
Print_Contract
cDoc : Document

Ready

?_print(D) /
cDoc=D

Request)

Received

!_printed() [isA4(cDoc)]

!_noPaper()

!_noA4() [not isA4(cDoc)]

Waiting
Confirmation

?_cancel() ? reduce()

Fig. 57. Print service contract (constructive style)

The realm of the service Print is described by the paper quantity available,
modelled by the attribute paper in the simple system Print_Semantics in Fig. 58.

The semantics of the service Print shown in Fig. 58 is defined by means of
a simple dynamic type and an associated interaction machine. We can see now
that the reason for getting the message !_noPaper; moreover, if we get the message
I_noA4 we know that there is however enough paper to print the document (we
can have a different service that after having received the message reduce may
inform you that there is not enough paper to print). Moreover, we also know
that each time a document is printed, the paper quantity will be decreased
exactly by the number of its pages, and this is modelled by the effect / paper =
paper - pages(cDoc) of the corresponding transition (again a different service may
consume an extra page printing a forefront with the information on the data and
the time of the printing).

[paper+X=0] /

cDoc : Document
paper : int

?_reduce() [paper = paper-pages(cDoc)]

<<Service Interface>> paper = paper+X [Ready]
Print
?_print(D : Document) X
?_reduce() ?_print(D) /
?:cancel() cDoc=D
I_printed() Received Request)
!I_noPaper()
I_noA4()
I_noA4() [
<<Simple System>> paper > pages(cDoc) and not isA4(cDoc)]]
Print_Semantics Waiting

Confirmation

[N=0] / paper = N

I_printed() [paper = pages(cDoc) and isA4(cDoc)] /

paper = paper-pages(cDoc)

!_noPaper() [pages(cDoc)>paper] >©

?_cancel()

Fig. 58. Print service semantics (constructive style)

Services Check Italian Here we consider only the service Check Italian, the
models of Check French and of Check English are similar.

<<Service Interface>>
Check Italian

?_check_Spelling(T : Text)
?_check_Grammar(T : Text)
!_spelling_Errors(SE : SpellErrors)
|_grammar_Errors(GE : GrammErrors)
!|_wrong_Language()

SpellErrors

Text

<<pred>>

none(SE : SpellErrors)

GrammeErrors

<<Enum>>

whichLanguage(T : Text) : Language
checkSpelling(T : Text) : SpellErrors
checkGrammar(T : Text) : GrammeErrors

Language

English
French
Italian

Fig. 59. Check Italian interface

Fig. 59 shows the interfaces of service Check Italian. The service offers two
types of checking: the spelling and the grammar checking, that may be re-
quired by using the two input interactions of the service: ?_check_spelling and
?_check_Grammar. The content and the structure of the text is defined by the
datatype Text, the spelling and grammar errors by the datatypes SpellErrors, and
GrammeErrors. The language of a text is detected by the operation whichLanguage of

>®

Text. The return value of this operation can be one of the three values: English,
French and Italian, which are listed in the enumeration type Language.

<<Service Interface>>
Check Italian
?_check_Spelling(T : Text)
?_check_Grammar(T : Text)
!_spelling_Errors(SE : SpellErrors)
!_grammar_Errors(GE : GrammErrors)
!_wrong_Language()

7

<<simpleSystem>>
Check Italian_Contract
cT : Text

? check_Grammar(T) / cT = T ?_check_Spelling(T) /cT =T

!_wrong_Language()
[which_language(cT) <>
Italian]

!_wrong_Language()
[which_language(cT) <> Italian]
Checking

Spelling J >@

Checking
Grammar

N
)
= S
O =)
g’m £
=c 5 &
TEE a3
Qm© u 9‘_‘
QEG Ul
2=0 9
g e £p
£33)
<& Yuaa g
& VT wn BU\
[Uy - ©
AR [=hrv] =3
=% 9 o
& = 5 | ©
wl < c
120 =
oS g c
£8 ¢ =
=0]
g§ < o
Q¥ o V‘,
wE o - 3
SERO O

Fig. 60. Check Italian contract (Constructive Style)

In the service contract in Fig. 60, there are five final states illustrating the
five results provided by service Check Italian in all possible cases. Before to
check the spelling or the grammar, the service will check if the submitted text
is written in Italian. If not, the service will send the message ! wronglLanguage.
If the service finds some errors in the text, it will return the list of the found
errors. If there is no error, this list will be empty. If there are spelling errors in a
text required to be grammar checked, the service will return the spelling errors.
It means that the service performs the grammar check if only if there are no
spelling errors in the text.

We do not give the semantics of service Check Italian, since this service does
not depend on a realm: we assume that the correctness of the spelling and of
a language does not depend on any changeable aspects of the real world, and

moreover this service does not modify anything. If it is relevant to precisely
specify how the spelling and grammar checks are made, it is possible to enrich
the definition of the datatype Text by operation definitions or by constraints.

<<Service Interface>>
Publish On Web
?_publish_Web(P : Page, URL : Url)
!I_published()
!I_wrongURL()
!I_notHTML()
I_serverNotAvailable()

Page Url
iSHTML(P : Page) : boolean | | isWFF(U : URL) : boolean

Fig. 61. Publish on Web service interface

Service Publish on Web Fig. 61 presents the interface of the service Publish on
Web, whereas its contract is shown in Fig. 62. When a page published on the
web, then the following conditions are satisfied: the page is in HTML format,
the URL that the user provides is correct and its server is available at this time.
In order to check whether the page is written in HTML and the provided URL
is correct or not, two operations isHTML(P) and isWFF(U) are defined in the
datatypes Page and URL respectively.

If the page is not in HTML, the service will communicate ! _notHTML(),
whereas if it is in HTML but the URL is ill-formed the service will send an-
other error message. Finally, if both the document is in HTML and the URL
is correct, the service may still send the error message about the server of the
URL being not available.

The semantic view of service Publish on Web concerns the availability of the
Web servers, and thus this is its realm, and it is modelled by the datatype Web
The operations up and down modify the web status making a server available and
not available respectively, whereas the predicate on checks if a server associated
with a url is available.

Participants Six participant types of Office System are collected in the type di-
agram in Fig.64. They are represented by six <« Participant>> classes having ports
typed by interfaces of the services they provide and consume. < Participant>> Of-
fice Component is the participant type which only consumes services, thus all its
ports are typed interfaces shown by the “cup” notation. Meanwhile, other par-
ticipant types are providing participants which their ports are typed interfaces
shown by the “lollipop” notation, for instance, <Participant>> Printer Center has
got the port Print representing for service Print that it provides.

Ready

<<Service Interface>>

Publish On Web ?_publish_Web(P,URL) /
?_publish_Web(P : Page, URL : Url) cP = P; cURL = URL
!_published() .
("Publishing
!_wrongURL() BN tHTMLO [not isHTML(cP)]

I_notHTML() @

!_serverNotAvailable() , URLO [
!_wrong
[E isSHTML(cP) and not isWFF(cURL)]

<<simpleSystem>>
Publish On Web_Contract I_serverNotAvailable() [

cP : Page isHTML(cP) and isWFF(cURL)]
cURL : Url

I_published() [
isHTML(cP) and isWFF(cURL)]

Fig. 62. Publish on Web service: contract (constructive style)

<<Service Interface>> .
Publish On Web /web =W
?_publish_Web(P : Page, URL : Url) b=
I_published() / web = / we

I_wrongURL() up(web,U) Ready) down(web,U)

_notHTML(— <

!_serverNotAvailable() ~—
?_publish_Web(P,URL) /

cP = P; cURL = URL

<<simpleSystem>> e
Publish On Web_S tics Publishing
cP : Page I_notHTML() [not isHTML(cP)]
CURL : Url =)
B !I_wrongURL() [

isHTML(cP) and not isWFF(cURL)]

1 | web

Web >©
<<pred>> on(W : Web, U : Url) I_serverNotAvailable() [
up(W : Web, U : URL) : Web isHTML(cP) and isWFF(cURL) and not on(web,cURL)]
down(W : Web, U : URL) : Web >©

1_published() [
g::zzmwb)élﬂ?b]m isHTML(cP) and isWFF(cURL) and on(web,cURL)]
URL <> URL' =>
(on{up(W,URL),URL") <=> on(W,URL"))
URL <> URL' =>
(on(down(W,URL),URL) <=> on(W,URL"))

Fig. 63. Publish on Web service semantics (constructive style)

13.2 Property-oriented Casl4Soa Model of Office System

In this section, we model Office System using CASL4S0A in a property-oriented
way, giving only the contracts and the semantics of the different services, since
all the other parts are the same as in the constructive mode in Sect. 13.1.

<<Participant>>
Office Component

1Tt

Check FrenclCheck English Check Italian Print

Publish On Web

]

<<Participant>>

< <P§rticipant>> Web Publisher
Italian Center

Check Italian Publish On Web

<<Participant>>
French Center

<<Participant>>

Check French Printer Center

Print

<<Participant>>
English Center

Check English
Fig. 64. Office System participants models

in_any_case always
(isA4(D) A pages(D) < paper A ?_print(D)) =
eventually (!_printed() A
(paper = N = next paper = N-pages(D))
in_any_case always
(not isA4(D) A pages(D) < paper and ?_print(D)) =
eventually (I_noA4() A
eventually ((?-reduce()A (paper = N = next paper=N-pages(D)))
V ?_cancel()))
in_any_case always
(pages(D) ¢ paper A ?_print(D)) = eventually !_noPaper()
in_any_case always
3 X.Xi0 = eventually paper=paper+X

Fig. 65. Print service: semantics (property oriented style)

The semantics in property oriented style of service Print is characterized by
formulas that are more precise than those in the contract. They describe not only
the possible transitions of the system but also what justifies the answer, what is
true or not, and the effects of the requests. For example, in Fig. 65, the second
formula expresses that whenever the service receives printing request ?_print(D),
meanwhile the paper is not in A4 format not isA4(D) and the printer has enough
paper (pages(D) < paper), it will communicate that the paper is not in A4 !_noA4()
and either cancel the printing ?_cancel() or receive the page reducing from the
user ?_reduce(). If the user reduces the pages, the effect of this interaction is that

paper will be decreased paper = N - pages(D). The last formula is defined in order
to guarantee that the printer always will be refilled with paper.

in_any_case always
?_check_Spelling(T) A whichLanguage(T)j;Italian =
eventually |_wronglLanguage()
in_any_case always
?_check_Spelling(T) A whichLanguage(T)=ltalian =
eventually !_spelling_Errors(checkSpelling(T))

in_any_case always
?_check_Grammar(T) A whichLanguage(T)j;ltalian =
eventually !_wronglLanguage()

in_any_case always
?_check_Grammar(T) A whichLanguage(T)=ltalian A none(checkSpelling(T)) =
eventually |_grammar_Errors(checkGrammar(T))

in_any_case always
?_check_Grammar(T) A whichLanguage(T)=ltalian A not none(checkSpelling(T)) =
eventually !_spelling_Errors(checkSpelling(T))

Fig. 66. Check Italian: contract (property oriented style)

in_any_case always
(isHTML(P) A isWFF(U) A ?_webPublish(P,U)) =
eventually (!_published() Vv !_serverNotAvailable())
in_any_case always
(not isHTML(P) A ?_webPublish(P,U)) =
eventually (!_notHTML())
in_any_case always
((isHTML(P) A not isWFF(U) ?_webPublish(P,U)) =
eventually (!_wrongURL())

Fig. 67. Publish on Web service: contract (property oriented style)

The semantic view of service Publish on Web concerns the availability of the
Web server. The datatype Web built in Fig. 63 can be also regarded as the Inter-
net in general. The operation up(W,P) that returns the Web type expresses the
available status of the Web server, otherwise the operation down(W,P) expresses
an unavailable status. It is important to note that these statuses are temporal for
an actual Web server at specific moment. Later on we shall use those operations
to define the semantics in property oriented style for this service in Fig. 68.

on(up(W,U),U)
U£U =
on(up(W,U),U")< on(W,U")
not on(down(W,U),U)
U=#U =
on(down(W,U),U")< on(W,U")

Fig. 68. Publish on Web service: semantics (property oriented style)

Fig. 68 defines the properties of the Web server in two formulas that express
the conditions for the Web server to be available. The Web server is available if
and only if it will turn back to the status up after it was in status down before,
while the URL can be different. It means that if the Web server is available, it
will not maintain the down status for ever. Therefore at last the page will be
published in this case.

References

1. Object Management Group. Service oriented architecture Modeling Language
(SoaML) - Specification for the UML Profile and Metamodel for Services (UPMS),
May 2012.

