
Copyright:

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Comparing the Maintainability of two Alternative

Architectures of a Postal System: SOA vs. non-SOA

Maurizio Leotta, Filippo Ricca, Gianna Reggio, Egidio Astesiano

Abstract:

Recently, we were prompted by a local company to improve the maintainability of a postal

legacy system and reduce the time to close the change requests.

In this paper, we describe the first step of our on-going project that consists in the comparison

of two alternative architectures of the target postal system using the Software Architecture

Analysis Method (SAAM). The first is the architecture currently used in the postal system

while the second one is a new architecture based on SOA. Preliminary results are in favour of

the new architecture that can be adapted to change faster than the actual one.

The main lesson that we have learnt in this project is that SAAM is a methodology simple to

apply and useful for comparison purposes but the effective final result remains somewhat

subjective.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/CSMR.2011.41

Comparing the Maintainability of two Alternative Architectures of a Postal System:
SOA vs. non-SOA

Maurizio Leotta, Filippo Ricca, Gianna Reggio, Egidio Astesiano
Dipartimento di Informatica e Scienze dell’Informazione - DISI

Università di Genova, Italy
Email: maurizio.leotta|filippo.ricca|gianna.reggio|astes@disi.unige.it

Abstract—Recently, we were prompted by a local company
to improve the maintainability of a postal legacy system and
reduce the time to close the change requests.

In this paper, we describe the first step of our on-going
project that consists in the comparison of two alternative
architectures of the target postal system using the Software
Architecture Analysis Method (SAAM). The first is the archi-
tecture currently used in the postal system while the second
one is a new architecture based on SOA. Preliminary results
are in favour of the new architecture that can be adapted to
change faster than the actual one.

The main lesson that we have learnt in this project is
that SAAM is a methodology simple to apply and useful for
comparison purposes but the effective final result remains
somewhat subjective.

Keywords-Architecture Analysis, Architectures Comparison,
Re-engineering, Legacy postal system, SAAM, SOA

I. INTRODUCTION

The authors have been recently involved by a local com-
pany in the restructuring/re-engineering of a postal system.
The system, named XYZ1, is a large non object oriented
legacy system (more than 1 million lines of code, 2000 files
and 200 executable modules) written in several languages
(i.e., C, C++, VB, C#, VBSCRIPT and PL/SQL) and running
in a distributed environment. Acquisition and processing are
executed on the central site, while the production takes place
in one of the peripheral sites (called printing centers). XYZ
is used by postal organizations that offer their customers,
such as big companies (e.g., banks), specific services in
order to manage big amounts of physical mail (e.g., invoices
and bank balances) starting from electronic data files given
in several formats (e.g., XML and PDF).

The restructuring/re-engineering of the postal system is
motivated by the need of having a more agile IT system
that can be adapted to change faster. In the last ten years,
emerging technologies (e.g., new printers and enveloping
machines), new kind of inputs and outputs (e.g., new docu-
ment formats), new laws/rules disrupting the current require-
ments and new users’ needs have changed and expanded the
functionalities required to a postal system.

1For privacy reason, we cannot report here the name of the system.

The company is mainly interested to understand whether:
(i) the long cycles of code maintenance needed to satisfy
the customers’ requests are mainly due to the Actual Ar-
chitecture, which is degraded over time and (ii) a New
Architecture of the System based on SOA could improve the
current situation. Thus, the first step of the project consists in
analyzing the Actual Architecture and understanding whether
a New Architecture based on SOA [2] could reduce the
maintenance/evolution times.

The first problem that we faced was deciding a strategy
and a usable methodology to carry out the comparison. After
several discussions and the search of a methodology for
the comparison, we decided to proceed as follow. We have
first analyzed and reverse engineered XYZ, helped by the
experts of the system and by the documentation, obtaining
the Actual Architecture description. Then, we sketched a
New Architecture description, based on modern paradigms,
paying attention particularly to maintainability and evolv-
ability. Finally, we compared the two architectures using
the Software Architecture Analysis Method (SAAM) [1],
[3]. SAAM is a method for predicting system level quality
attributes (in our case maintainability) based upon software
architectural evaluation. SAAM makes use of the concept of
scenario [1] in order to evaluate competing architectures.

The work is still ongoing and here we only report some
preliminary results of the comparison.

The paper is organized as follows. Section 2 presents
the key ideas of SAAM. Section 3 describes the competing
architectures. Section 4 reports the comparison and discusses
the preliminary results. Finally, Section 5 reports the lessons
learnt and Section 6 concludes the paper sketching some
future work.

II. SAAM

SAAM [1], [3] consists of four steps: describing architec-
tures, developing scenarios, performing scenario evaluations
and performing overall evaluation. In the following, we
describe how we have instantiated those steps in our case.

1) Describing Architectures. We have produced a high-
level description of the two architectures using a
simple syntactic architectural notation. The Actual

Architecture description has been created by analyz-
ing the documents provided by the company, reverse
engineering the code and consulting the experts of the
system. To reach an agreement on the Actual Architec-
ture, several meetings with the experts of the system
were needed. Instead, the New Architecture description
has been developed by ourselves following classical
key ideas for a good design (e.g., high cohesion and
low coupling among components) and paying attention
particularly to maintainability and evolvability. In that
last task, we were inspired by object oriented and SOA
principles.

2) Developing Scenarios. A scenario is a brief descrip-
tion (typically one sentence long) of some anticipated
or desired use of a system [1]. SAAM proposes to
use scenarios as a tool for the analysis of the quality
of a system. Scenarios express the particular instances
of each quality attribute important for the customer
of a system. The architecture under consideration is
analyzed with respect to how well or how easily
it satisfies the constraints imposed by each scenario
[1]. In our case, scenarios are change requests (CRs)
and the considered quality attribute is maintainabil-
ity/evolvability of the system. We used SAAM to
show which is the best architecture (i.e., the simpler
to modify) with respect to the considered CRs. For
this reason, we and the company have created a list
of scenarios that capture relevant and real change
requests emerged by the customer’s company needs.

3) Performing Scenarios Evaluation. In this step we
have analyzed the impact of each scenario on the
two architectures. In detail, for each scenario we
have described which components of the Actual/New
Architectures need to be modified to fit the scenario
and if there is the necessity to add new components to
the two architectures. Finally, for each modification or
addition we have estimated the accomplished effort. In
this way, it is possible to compare the two architectures
for each considered scenario in terms of the number of
components to modify/add, and in terms of the effort
to be done.

4) Performing Overall Evaluation. In this step we
have summed up the results of each scenario eval-
uation and grouped them in a summarizing table.
Thus, we can assess which architecture require less
modifications/additions and less effort to fit all the
considered scenarios. In this way it is possible to give
to the company a preliminary indication of the best
architecture with respect to the considered CRs.

III. ARCHITECTURES

In this section we briefly describe the two high level
alternative architectures for XYZ. We represented them
using a simple syntactic architectural notation as suggested

in [3]. We agree with the authors of [3] that: “The candidate
architectures should be described in a syntactic architectural
notation that is well-understood by the parties involved in
the analysis.” These architectural descriptions indicate the
systems computation, data components and all component
relationships (i.e., the connectors). The rectangles represent
the computational components of the System while the
arrows represent the control/data flow between different
components. Finally, the cylinders represent databases.

The Actual Architecture, that reflects the real architecture
of the current System, is sketched in Figure 1.

Front End

Server GUI

LI_SONLI_SONSub

Server

DB

CDS
CDS

Printing Center

Normalizer Checker & Cleaner Pre-Generator & Generator

Normalizer

Type A

Normalizer

Type B

Pre-Generator & Generator

Type A

Pre-Generator & Generator

Type B

Storage System

Dispatcher

T
ra

n
s
fe

r S
y
s
te

m

Figure 1. Actual Architecture description

Electronic files (batches) submitted by the customers,
are acquired by the Front End that sends them to
the Server. The Server handles in parallel all the re-
ceived files: batches are normalized, checked, cleaned,
pre-generated, dispatched, generated and, in the end, sent
to the peripheral Printing Centers. Printing Cen-
ters carry out the following phases: printing on paper,
folding, enveloping and boxing. For each received batch,
the Server create a SubServer process that, using the
components Normalizer, Checker & Cleaner and
Pre-Generator & Generator, transform that batch
inch by inch. To execute their task, these last compo-
nents call more specialized components (e.g., Normalizer
Type A). For each type of format managed by the system,
there exists a component that specializes Normalizer
and Pre-Generator & Generator. All the relevant
information is stored in the database DB, which also contains
a set of Stored Procedures (Dispatcher) used to perform
splitting and delivery of the batches to the Printing
Centers. The files generated during the entire transfor-
mational process are stored in the Storage System.
Instead, the task of the Transfer System is to transfer
the elaborated batches to the Printing Centers. Finally, the
human operator (not shown in Figure 1) can set several

parameters of the System by means of a GUI.

T
ra

n
s
fe

r S
y
s
te

m

C
h
e
c
k
e
r

Front End

Server

GUI

DB

CDSCDSPrinting Center

Storage System

Batch Type A

Batch Type B

C
le

a
n
e
r

P
re

-G
e
n
e
ra

to
r

 T
y
p
e

A

D
is

p
a
tc

h
e
r

DB

Info

Dispatcher

P
re

-G
e
n
e
ra

to
r

 T
y
p
e

B

G
e
n
e
ra

to
r

 T
y
p
e

A

G
e
n
e
ra

to
r

 T
y
p
e

B

Figure 2. New Architecture description

Figure 2 describes the New Architecture for the System. In
this architecture several components have not been substan-
tially changed (i.e., GUI, Front End, DB, Printing Centers,
Transfer System and Storage System), while others have
been significantly modified. The core of the system, i.e.,
the portion of the system that oversees the management of
the batches, has been completely re-engineered following the
SOA paradigm2. Now, the Server manages the parallel ex-
ecution of several running orchestrators (the Batches). The
orchestrators call the Web services Checker, Cleaner,
Pre-Generator, Dispatcher and Generator able
to fulfil the various tasks. Note that in the New Archi-
tecture: (i) the splitting of the batches, realized in the
Actual Architecture by a set of Stored Procedures, is realized
by the Web service Dispatcher. (ii) the Checker &
Cleaner and Pre-Generator & Generator of the
Actual Architecture are each subdivided in two Web services.
(iii) the logic of the Normalizer is partially included in
the Server and simplified due to modifications of the input.

The New Architecture has been built by instantiating the
Multi-Translation Frame presented in [4]. Moreover, to show
its feasibility, we have implemented in Java a simplified
version of the postal system with the New Architecture,
producing a working prototype.

IV. EVALUATIONS BETWEEN ACTUAL AND NEW
ARCHITECTURES

In this section the remaining three steps of SAAM are
applied to the two architectures presented above.

2Really, at this level of abstraction SOA or OO make no difference. Each
component of the core of the system, can be indifferently seen as a Web
service or a OO component, i.e., as a communicating computational entity
providing a set of operations/capabilities.

A. Scenarios Description

A fundamental step of SAAM is the scenarios devel-
opment; the comparison between the two architectures is
conducted considering each scenario produced in this phase.
With the help of the experts of the system, we have created a
list of ten scenarios able to capture relevant and real change
requests emerged by the customer’s company needs.

An example of scenario considered in this work is
new_input_format that consists in: “modifying the
postal system so that it is able to accept and handle a new
input batch format called C”. As we have seen, the Actual
Architecture can receive inputs in a fixed number of formats.
That change request aims to extend the set of managed
formats with the new format C. The new_input_format
CR will impact several components: the components accept-
ing and using the inputs but also the components that work
with and transform the data submitted by the customers (e.g.,
Normalizer in the Actual Architecture).

B. Performing Scenarios Evaluation

In this phase, we have analyzed the impact of each
scenario on the two architectures. In detail, for each scenario,
we have: described which components of the Actual System
and which components of the New System require changes
to fit the scenario (modification) and if there is the necessity
to add new components to the Systems (addition). Finally,
for each introduced modification/addition we have estimated
the effort to be done (i.e., low, medium, high). In this way
it is possible to determinate which architecture better fit the
scenario in terms of number of modified/added components,
and in terms of accomplished effort.

As an example, we show the impact of the
new_input_format CR over the two architectures.
Table I describes which changes are needed to implement
new_input_format in the Actual System, while Table
II shows the impact of the new_input_format CR on
the New System.

Table I
IMPACT OF NEW_INPUT_FORMAT CR ON THE Actual Architecture

Component Description Typea Effort
Normalizer management of the new Mod Light

Normalizer Type C
Normalizer Type C management of the Add Medium

tool for the format C
Pre-Generator management of the new Mod Medium
& Generator Pre-Generator

& Generator Type C
Pre-Generator & management of the Add Medium

Generator Type C tool for the format C
SubServer introduction of a Mod Light

new type of flow

aMod means Modification and Add means Addition.

Looking at the two Tables, it is apparent that there is a
little advantage for the New Architecture. The number of

Table II
IMPACT OF NEW_INPUT_FORMAT CR ON THE New Architecture

Component Description Type Effort
Server management of a new Mod Medium

type of Batch / Input
Batch Type C introduction of a new Add Light

type of Batch
Pre-Generator introduction of a new Add Light

Type C type of Pre-Generator
Generator introduction of a new Add Light

Type C type of Generator

impacted components is 5 for the Actual Architecture and
only 4 for the New Architecture. Moreover, the effort is
greater in the case of the Actual Architecture (3 medium and
2 low effort operations for the Actual Architecture vs. 3 low
and 1 medium effort operations for the New Architecture).

C. Performing Overall Evaluation

The last step of SAAM is executing an overall evaluation
of all the considered scenarios on the two architectures with
the aim of assessing which is the best one. It means grouping
the results of each scenario evaluation in a summarizing
table. To execute the comparison, we considered both the
number of components modified/added3 and the estimated
effort. Clearly, the best architecture is that requiring less
additions/modifications and less effort. Table III clearly
shows that the New Architecture requires less changes
(modifications plus additions) to the various components
to accommodate the considered ten scenarios. Globally, the
Actual Architecture needs 35 changes while the new one
only 27. Furthermore, the New Architecture also requires a
lower total effort.

Table III
TOTAL SCENARIOS IMPACT COMPARISON

Arch Component Type Effort
Impacted Add Mod Low Med High

Actual 35 30 5 21 11 3
New 27 19 8 17 8 2

In conclusion, we can state that the New Architecture can
be adapted to change faster than the Actual Architecture.

It is important to note that this outcome strongly depends
on the ten scenarios chosen. However, this is a significant
achievement because the ten scenarios have been supplied
by the company and they are real change requests reflecting
the needs of the customers.

V. LESSON LEARNT

Comparing two architectures for a system with the aim
of understand which is the best with respect to a criterion
is not an easy task. That task is made more difficult, as

3We decided to equally weight modification and addition even if usually
modifications require more effort. We opted for this solution because it is
difficult to set a reliable proportion different from 1.

in our case, if one architecture is well known whereas the
other one is hypothetical, more immature and created only
to answer to a research question. In such case, the main
difficulties are understanding whether: (i) the evaluation of
the impact on the New Architecture is realistic and (ii)
the Actual Architecture does not lose the comparison only
because is easier finding and computing the impact in a well-
known architecture than in a hypothetical one.

In this preliminary work we have experimented that
SAAM is a methodology very useful for organizing a
process of architectural comparison. Altogether, it is simple
to apply even if the effective final result remains somewhat
subjective. In several cases, also with the constant support
of the experts of the postal system, we had some problems
to identify the impact of the CRs on the two architectures
and to presuppose the effort. Another problem that we
have observed is related to the abstraction level of the two
architectures. It is difficult to sketch two architectures at the
same level of abstraction, especially if, as in our case, they
follow two different paradigms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described the first step of our on-
going re-engineering/restructuring project. It mainly consists
in the comparison of two alternative architectures of a legacy
postal system using SAAM. Preliminary results are slightly
in favour of the New Architecture: it can be adapted to
change faster than the Actual Architecture.

Future works will be devoted to extend the number of CRs
to have a more reliable comparison and to complete the first
step of the project. The Company will decide how and if
to proceed with the next steps of the project depending on
the conclusive result of the comparison. In particular, the
next step will be, probably, a migration towards SOA (re-
engineering) if the comparison will be completely in favour
of the New Architecture. Otherwise, it will simply consist
in a restructuring step at level of code (e.g., using static
analysis tools to remove clones and code smell detectors to
identify opportunities to improve the postal system through
refactoring).

REFERENCES

[1] P. Clements, L. Bass, R. Kazman, and G. Abowd. Predicting
software quality by architecture-level evaluation. In Proc. of
International Conference on Software Quality, volume 5, pages
485–497. Software Engineering Institute, 1995.

[2] T. Erl. SOA Principles of Service Design. Prentice Hall, 2007.

[3] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-
based analysis of software architecture. IEEE Softw., 13(6):47–
55, 1996.

[4] G. Reggio, E. Astesiano, F. Ricca, and M. Leotta. A problem
frame-based approach to evolvability: the case of the multi-
translation. In 16th Monterey Workshop, Microsoft Center,
Redmond, US, 2010. (Submitted).

