
Copyright:

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Improving the Quality and the Comprehension of

Requirements: Disciplined Use Cases and Mockups

Gianna Reggio, Filippo Ricca, Maurizio Leotta

Abstract:

In this paper we sketch a novel method for writing requirements specifications that enriches

disciplined use cases with screen mockups. Disciplined use cases are characterized by a quite

stringent template, strongly structuring also the form of the scenarios’ steps (e.g., the subject

of each step must be explicit). That structuring allows to impose further constraints helping to

prevent common mistakes and to increase the quality of the specifications (e.g., defining a

detailed glossary helps to avoid confusion and ambiguities). Disciplined use case are still

expressed using natural language, but the strong structuring allows to reach a good level of

precision without having to introduce new notations. Screen mockups associated with the

scenarios’ steps, present the corresponding GUIs as seen by the human actors before/after the

step executions, improving the comprehension of the requirements, and allowing also to

precisely present user interface’s non-functional requirements.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/SEAA.2014.79

Improving the Quality and the Comprehension of
Requirements: Disciplined Use Cases and Mockups

Gianna Reggio, Filippo Ricca, Maurizio Leotta
DIBRIS, Università di Genova, Italy

gianna.reggio@unige.it, filippo.ricca@unige.it, maurizio.leotta@unige.it

Abstract—In this paper we sketch a novel method for writing
requirements specifications that enriches disciplined use cases
with screen mockups. Disciplined use cases are characterized by
a quite stringent template, strongly structuring also the form
of the scenarios’ steps (e.g., the subject of each step must be
explicit). That structuring allows to impose further constraints
helping to prevent common mistakes and to increase the quality
of the specifications (e.g., defining a detailed glossary helps to
avoid confusion and ambiguities). Disciplined use case are still
expressed using natural language, but the strong structuring
allows to reach a good level of precision without having to
introduce new notations. Screen mockups associated with the
scenarios’ steps, present the corresponding GUIs as seen by the
human actors before/after the step executions, improving the
comprehension of the requirements, and allowing also to precisely
present user interface’s non-functional requirements.

Keywords-Requirements Specification, Use Case, Screen Mock-
ups.

I. INTRODUCTION

It is well known that a substantial portion of software
defects originate in the requirements engineering phase of
the software development process [15]. Defects originated
in this phase are typically caused by ambiguous, incom-
plete, inconsistent, unexpressed, unusable and over-specific
requirements. Defects might also stem from communication
problems among stakeholders [8]. To face these issues, a
number of methods/techniques have been proposed in literature
for representing requirements. Use cases are a widely used
technique to specify the purpose of a software system, and to
produce its description in terms of interactions between actors
and the subject system [4].

Even presented by means of use cases, the requirements
could still remain difficult to use and/or to comprehend and may
result in problems in the software system under development
(e.g., contradictory requirements). Screen mockups (also called
user interface sketches or user interface mockups) are used
for prototyping the user interface of a subject system [6], [9].
Mockups can be used in conjunction with use cases, associating
them with the scenario steps, to improve the comprehension of
functional requirements and to achieve a shared understanding
on them, and simultaneously allowing to represent the non-
functional requirements concerning the user interface [5].

Enriching the use cases with the screen mockups arises
the problem of guaranteeing that the mockups are coherent/
consistent with the textual part of the use cases, and that
they truly provide information on how to structure the GUI’s

supporting the functionalities presented by the use case (e.g.,
the screen mockup associated with the step “the user inserts
the password” that shows a form with two text boxes is not
consistent). Screen mockups not corresponding to what is
expressed by the use cases scenarios may become a factor of
confusion and add new ambiguities. Furthermore, the screen
mockups may or not convey the same information of the textual
part of the use cases. For example, if the mockup associated
with the step “The system asks to pay X dollars” presents two
text boxes showing net price and VAT, then, it also adds the
additional low level requirement “the system has to inform
the client also about the paid VAT”. If the screen mockups
present relevant information on the subject system not provided
by the textual part of the use cases, they are not any more a
support to better understand the requirements, but they become
a fundamental part of the requirements specification.

As a matter of fact, the consistency between use cases and
screen mockups cannot be guaranteed if the former are poorly
structured and have a low level of precision. Requirements
specifications based on use cases may have very different
levels of precision1, from scarcely structured scenarios made
by lists of freely formed natural language sentences, to use cases
presented following quite detailed and structured templates,
for example SWEED2 (a variant of the template presented
by Cockburn in [4]) where a glossary of terms used in the
definition of use cases is added, till to methods where the use
cases are represented by means UML models [2] or even by
formal specifications, see, e.g., [3].

We believe that disciplined natural language specifications,
i.e. where the text must follow very detailed and stringent
patterns, are a good compromise to express requirements [10],
[7]. For this reason, we have conceived the “disciplined use
cases” enriched by mockups, taking the SWEED template as
starting point. Disciplined use cases are: (1) characterized by a
high level of precision without having to introduce additional
notations and the consequent effort required to learn and to use
them, (2) suitable to be enriched in a consistent way with the
screen mockups, and (3) useful to detect errors, incompleteness,
bad smells (e.g., unused elements), and bad quality factors (e.g.,
too many extensions and too many steps in a scenario) in the
requirements specification (thanks to many well-formedness
constraints).

1Exactly or sharply defined or stated (Merriam Webster’s Dictionary).
2http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.196.7782

Following our method allows to obtain consistent screen
mockups that are fully integrated in the development process,
and thus that are not simply a bunch of drawings added at the
end of the specification. To the best of our knowledge, this is
the main novelty aspect of our work.

The remainder of the paper is organized as follows. Sect. II
and Sect. III, describe our method to specify the requirements
using disciplined use cases and screen mockups followed by
conclusions and future work (Sect. IV).

II. DISCIPLINED USE CASES

We illustrate our proposal for specifying the requirements by
applying it to the AL_L case study, described as follows. AL_L
handles the ALgebraic Lotteries; it will allow the clients to buy
the tickets via the web, and to pay them by using credit cards,
handled by an external system. AL_L will communicate with
the clients also by means of emails. Moreover, the clients will
be identified with the help of an external authentication service.
The tickets of a lottery will be numbered by a finite subset
of the integer numbers, and the winning ones will be those
labelled with the higher numbers with respect to a specific total
order determined by an algebraic expression3. The managers
may distribute some free tickets to those that have already
bought at least one ticket, again an algebraic expression will
determine which tickets to give away and to which clients.

The form of the requirement artifacts is shown in Fig. 1 by a
metamodel presented by a UML class diagram. A requirements
specification consists of a UML use case diagram, of a
description of each use case appearing in that diagram, and of
a glossary that lists and makes precise all the terms used in
the descriptions of the use cases. The use case diagram is the
only part of the specification not expressed using the natural
language. We have opted for including this diagram since it is
really valuable for summarizing use cases and actors and it is
quite simple to explain and produce.

The glossary is a list of entries, each one consisting of
the name of the defined term and of a corresponding short
description. The glossary entries are distinguished in those
relative to data (e.g., the credit card data, the client info),
and those about the attributes abstractly describing the state
of System, indicated as system attributes (e.g., the list of the
names of the currently registered clients, the number of tickets
of the current lottery already sold). The main objective of a
glossary is to: (i) shorten use cases; (ii) reduce ambiguities
(e.g., to avoid using different ways to refer to the same entity);
and (iii) clarify the meaning of the steps of a scenario (e.g., a
richer description of the various entities could be given). Fig. 2
shows a fragment of the requirements specification glossary of
the AL_L case study (the complete one can be found in [11]).

The use case diagram summarizes the main ways to use
the System (i.e., it presents its use cases), making clear which
actors take part in them. Recall that actors are roles for entities
interacting with System, not specific individuals. The actors

3Such expressions will be provided to the system managers by some control
authority encrypted in some way, and so the managers cannot manipulate the
prize drawing.

Fig. 1. Requirements Specification Structure

are distinguished in: – primary, those having goals on System,
i.e., those that obtain value from interacting with the System,
and – secondary, those over which the System has a goal, i.e.,
those that support it in creating value for primary actors. The
use case diagram for the AL_L case study is reported in [11].

A use case description consists of general information about
the use case, plus a set of scenarios (see Fig. 1). Fig. 3 presents
an example of use case description; it refers to the use case
Register of the AL_L system. It is periodical, with high priority,
its level is user-goal, and its aim is to allow the clients to
register to the AL_L system. A primary actor (Client) and two
secondary actors (Authentication and Credit Card Service) take part
in this use case.

A use case includes several scenarios, see Fig. 1. We present
the abstract structure of a scenario in Fig. 4. The main success
scenario describes the basic execution of the use case. The
extensions (optional) are a set of scenarios, defining all the other
possible executions of the use case. A scenario is an ordered
sequence of steps, where each step describes an interaction
between the System and one of the actors of the use case;
thus, as said before, it represents a particular execution of the
use case. Technically, a scenario is a sequence of numbered
lines, where each line is either a basic step or an indication of

Data
(**3) credit card data: the information characterizing a credit card

(Type (Mastercard, Visa, Diners), Number, Expiration Date)
(**4) client info: the information about a registered client (email,

data of his/her credit card, numbers of the bought tickets)
(**5) password: more than 8 characters with the inclusion of at

least one special character (e.g., #, $)
(**6) email: a valid email address (RFC 5322 compliant)
System attributes
(**9) Running: a boolean, true if a lottery is currently running
(**10) Available tickets: set of integer numbers, the numbers of

the tickets of the current lottery still not assigned to some client
(**11) Registered Clients: the information about the registered

clients

Fig. 2. AL_L Requirements Specification: a fragment of the glossary

Use Case Register
Level: User Goal
Priority: 1
Frequency: Periodically
Intention in Context: A client wants to register herself/himself
to AL_L to be able to play in the lotteries
Primary Actor(s): Client
Secondary Actor(s): Credit Card Service, Authentication
Main Success Scenario:
showRegisterMockup
1. The Client asks AL_L to be registered, giving an email (**6) and
the data about a credit card (**3).
2. If no one among the registered clients (**11) is using the given
email, and the credit card data are well-formed (**3), AL_L asks
the Credit Card Service to check them.
3. The Credit Card Service informs AL_L that the submitted credit
card is valid.
4. AL_L asks the Authentication to register the client giving his/her
email.
5. Authentication confirms the registration and gives to AL_L the
client password (**5).
6. AL_L informs the Client that (s)he has been registered and gives
her/his password. The information about Client (her/his email, credit
card data) (**4) is added to the list of the clients (**11). The use
case ends with success.

Extensions:
2a.1 If the credit card data are ill-formed (**3) AL_L informs Client
that the registration has failed. The use case ends with failure.
showRegisterFailedMockup
2b.1 If someone among the registered clients (**11) is using the
given email, AL_L informs Client that the registration has failed.
The use case ends with failure.
showRegisterFailedMockup
3a.1 The Credit Card Service informs that the submitted credit card
is invalid.
3a.2 AL_L informs the Client that the registration has failed. The
use case ends with failure.
showRegisterFailedMockup

Fig. 3. Register Use Case. Underlined terms represent hyperlinks to screen
mockups. (**. . .) refer to items of the glossary shown in Fig. 2

a repetition of some steps or the inclusion of another use case
or an extension point.
A basic step has the following form:

[cond] subject interaction effect continuation
– cond is a natural language fragment stating the condition under
which the step may be executed (it should start with “If”). It
is optional, if it is not present, it is intended as the always
true condition. It should be about the System state attributes
(i.e., the current state of System) and the data appearing in
the interaction and effect part of the step, and thus it will be
expressed using the terms introduced by the glossary.
– subject may be either an actor (primary or secondary) of the
use case or the System.
– interaction is a sentence describing either what flows from the
actor towards the System or vice versa, it should be expressed
using a verb in the present tense third person.
– effect is a sentence describing a transformation of the System
state attributes, and thus it will be written using the terminology

Fig. 4. Structure of a Scenario

introduced in the glossary. It is optional, and if it is not present,
then the step does not influence the System attributes.
– continuation defines what to do at the end of the step. It may
have one of the following forms:

– “The use case continues to” stpn, where stpn is the number
of a step of a scenario of the use case,

– “The use case ends with success/failure”.
It is optional, and if it is not present, then the use case continues
to the next step.

A Repetition is a natural language fragment having form:
“The steps from” stp1 “to” stp2 “are repeated until” cond,
where stp1 and stp2 are the numbers of two steps of the scenario
including this line, and cond is as the conditions for the steps.

An Extension point denotes where the behaviour of an
extending use case (i.e., a use case related by the extension
relationship) will be inserted.

An Extension is a scenario defined modifying an existing
one, by giving a different sequence of steps starting from a
given step (the extended step).

An Inclusion line is just written by reporting the name of
the included use case, that should be linked to the described
use case by the inclusion relationships in the use case diagram.

The steps of the main success scenario are labelled by natural
numbers (i.e., 1, 2, 3 . . .). The steps of the first scenario
extending a step X are numbered with Xa.1, Xa.2, . . . and those
of the second scenario Xb.1, Xb.2, . . . and so on (see for instance
Fig. 3).

The use case Register for the AL_L case study, shown in
Fig. 3, has three extensions corresponding to the cases: – the
provided email is already used by a registered client (2a), – the
data about the credit card were ill-formed (2b), and – the credit
card is invalid (3a).

It is possible to verify that a use case follows the disciplined
style by checking whether it satisfies a set of well-formedness
constraints, reported in [11].

III. SCREEN MOCKUPS

One or two screen mockups may be associated with each
basic step, where a human actor is involved; they are a

visualization of the GUI that will be shown at that point.
Mockups are drawings that show how the user interface of
System is supposed to look during the interaction between
it and the end-user (user-system interaction). Mockups may
be very simple, just to help the presentation of the user-
system interactions, or more detailed with rich graphics,
whenever specific constraints on the graphical user interface
are highlighted (e.g., requiring to use specific logos or brand
related colours) [9]. Fig. 5 and 6 show two screen mockups
for the use case Register (see Fig. 3) of the AL_L application.

When resources are limited and it is not possible to
develop the mockups for all the use cases, we recommend
to privilege the ones with frequency at least Periodically.
Moreover, mockups should be associated with the scenario
steps considered more relevant (it is the requirements analyst
who makes this decision) to show what the human actor will
see/will do at that moment, when (s)he will interact with the
System.

More in detail, let M be a mockup associated with a step S.
If the subject of S is the system, then M will show what can be
seen on the GUI at the end of the step. If instead the subject of
S is an actor, M may be associated: – with the end of S, and in
this case it will show what the actor will see just immediately
before to complete S (e.g., after having filled various fields just
before to press the button “send”); and – with the beginning
of S, and in this case M will show what the actor will see
just immediately before to start to execute the step. The initial

Fig. 5. Use Case Register “showRegisterMockup” Mockup

Fig. 6. Use Case Register “showRegisterFailedMockup” Mockup

Fig. 7. Use Case Buy Ticket. Two different initial screen mockups for the
step “Registered Client asks to buy the ticket with number N.”

screen mockups of the steps corresponding to extensions of S
obviously must coincide.

Placeholders for the mockups will be inserted before or
after the various steps in the use case descriptions, precisely
the initial ones before the corresponding step, and the end
ones after the step. Obviously, whenever the initial mockup
for an actor step coincides with the end one of the previous
step, its placeholder will appears only once in the scenario.
Placeholders may be realized in different ways depending on
the technology used to write the use cases (e.g., a link to a
picture in a Word document and a “click to enlarge the picture”
in a HTML document). In Fig. 3 the underlined terms are links
to the pictures reported in Fig. 5 and 6 respectively.

The use of the placeholders allows the readers of the use case
to choose when to examine the screen mockups, ignoring them
when interested only in the flow of the various steps. Instead, by
replacing all the placeholders with the corresponding pictures
we get an alternative visualization of the use cases (see
some examples in [11]) corresponding to the so called “paper
prototype” of System.

The disciplined style of the use cases allows to check/to
enforce to some extent the coherence of the mockups with
the textual parts of the use cases. Indeed, they should satisfy
a comprehensive set of constraints completely listed in [11];
here we only report a sample constraint in Fig. 8. The two
mockups shown in Fig. 5 and 6 satisfy all the constraints, and
thus are well-formed.

Let M be a screen mockup showing the GUI before steps S1, . . . ,
Sn, i.e., the initial steps of n extensions starting from the same
point, and all of them having an actor as subject.

– If the interaction part of Si (1 ≤ i ≤ n) refers to some
communication act (from the actor to system), then some means
to represent such act must appear in M (e.g., this constraint is
satisfied if there are two alternative steps “Client confirms”, and

“Client refuses”, and two buttons “Confirm” and “Refuse” appear
in M).

– If M contains some means for realizing some communication act
(from the actor to system), then there should be Si (1 ≤ i ≤ n)
referring to such communication act.

Fig. 8. Sample Well-formedness Constraints for Screen Mockups

For documentation it is possible to mark the screen mockups
to make explicit the relationships between the textual parts
of the associated steps and the graphical ingredients of the
mockups, to show that they are well-formed.

The screen mockups shown in Fig. 5 and 6 are quite simple
since the registration functionality does not need a complex
user interface neither an original one. Instead, in the case of
the use case Buy Ticket (see its description in [11]) the user
interface related to the steps for selecting the ticket number,
can be created in many different ways. It is important to allow
to express the (non-functional) requirements about the GUI by
choosing one specific way. We show in Fig. 7 two different
possibilities.

IV. CONCLUSION AND FUTURE WORK

In this work we have proposed a new kind of require-
ments specification based on disciplined textual use cases
enriched with screen mockups. The stringent constraints on
the text presenting the use cases and the glossary guarantee a
good quality level and reduce ambiguities, incompletenesses,
inconsistencies. Moreover, the addition of screen mockups
strictly corresponding to the use case steps largely improves
the comprehension of the requirements [13], without being the
source of additional problems. Furthermore, mockups allow
to express the non-functional requirements about the user
graphical interface.

Our approach is light-weight [12], [14], since it does not
require the use of any specific tool, nor the use of specific
formal or semi-formal notations, and can be learned in just a
few hours. It has been successfully validated by an industrial
project, several empirical experimentations [13], and by being
used for many years in the non-trivial student’s projects during
the software engineering course at the University of Genova [1].

Moreover, disciplined use cases with screen mockups are a
suitable starting point for:
– easily producing acceptance tests for the System covering

also the graphical user-interface aspects, and the high level of
precision of the scenario steps will allows to easily determine
the input and output to be used in the tests;

– formal inspection of the designed system: e.g., for each data
glossary item, check how it has been implemented; for each

system attribute item, check how it has been realized by
means of persistent data; for each screen mockup, check how
it has been implemented, and the associated steps will drive
the inspection of the events related to its widgets.
As a future work, we plan to extend our proposal by

completing it with a method to capture the requirements and
express them in the form described in this work. Moreover, we
also plan the realization of a supporting tool, helping in the
creation and visualization of the requirements specifications,
and most important in checking automatically the satisfaction of
the various well-formedness constraints. A prototyping version
of such tool has been realized as student project in a software
engineering course.

REFERENCES

[1] E. Astesiano, M. Cerioli, G. Reggio, and F. Ricca. A phased highly-
interactive approach to teaching UML-based software development.
In Proceedings of Educators Symposium at MoDELS 2007, pages 9–
18. Research Reports in Software Engineering and Management, IT
University of Goteborg, 2007.

[2] E. Astesiano and G. Reggio. Knowledge structuring and representation
in requirement specification. In Proceedings of 14th International
Conference on Software Engineering and Knowledge Engineering, SEKE
2002, pages 143–150. ACM, 2002.

[3] C. Choppy and G. Reggio. Improving use case based requirements using
formally grounded specifications. In M. Wermelinger and T. Margaria-
Steffen, editors, Fundamental Approaches to Software Engineering,
volume 2984 of LNCS, pages 244–260. Springer, 2004.

[4] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.
[5] J. Ferreira, J. Noble, and R. Biddle. Agile development iterations and

UI design. In Proceedings of Agile Conference, AGILE 2007, pages
50–58, 2007.

[6] H. R. Hartson and E. C. Smith. Rapid prototyping in human-computer
interface development. Interacting with Computers, 3(1):51–91, 1991.

[7] M. Leotta, G. Reggio, F. Ricca, and E. Astesiano. Towards a lightweight
model driven method for developing SOA systems using existing
assets. In Proceedings of 14th International Symposium on Web Systems
Evolution, WSE 2012, pages 51–60. IEEE, 2012.

[8] B. Meyer. On formalism in specification. IEEE Software, 3(1):6–25,
January 1985.

[9] M. O’Docherty. Object-Oriented Analysis and Design: Understanding
System Development with UML 2.0. Wiley, 1 edition, June 2005.

[10] G. Reggio, M. Leotta, F. Ricca, and E. Astesiano. Business process
modelling: Five styles and a method to choose the most suitable one. In
Proceedings of 2nd International Workshop on Experiences and Empirical
Studies in Software Modelling, EESSMod 2012, pages 8:1–8:6. ACM,
2012.

[11] G. Reggio, F. Ricca, and M. Leotta. Improving the quality and
the comprehension of requirements: Disciplined use cases and mock-
ups (complete version). Technical Report DIBRIS-TR-14-02, DIB-
RIS - University of Genova, Italy, February 2014. Available at
http://sepl.dibris.unige.it/TR/UseCasesMockups.pdf.

[12] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano.
On the effort of augmenting use cases with screen mockups: results
from a preliminary empirical study. In Proceedings of 4th International
Symposium on Empirical Software Engineering and Measurement, ESEM
2010, pages 40:1–40:4. ACM, 2010.

[13] G. Scaniello, F. Ricca, M. Torchiano, G. Reggio, and E. Astesiano.
Assessing the effect of screen mockups on the comprehension of
functional requirements. ACM Transactions on Software Engineering
and Methodology (TOSEM), (in press), 2014.

[14] G. Scanniello, F. Ricca, M. Torchiano, C. Gravino, and G. Reggio.
Estimating the effort to develop screen mockups. In Proceedings of
39th EUROMICRO Conference on Software Engineering and Advanced
Applications, SEAA 2013, pages 341–348, 2013.

[15] R. Young. Effective Requirements Practice. Addison-Wesley, 2001.

