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Abstract—Test scripts used for web testing rely on DOM
locators, often expressed as XPaths, to identify the active web
page elements and the web page data to be used in assertions.
When the web application evolves, the major cost incurred for the
evolution of the test scripts is due to broken locators, which fail
to locate the target element in the new version of the software.
We formulate the problem of automatically generating robust
XPath locators as a graph exploration problem, for which we
provide an optimal, greedy algorithm. Since such an algorithm
has exponential time and space complexity, we present also a
genetic algorithm.
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I. INTRODUCTION

DOM locators are widely used in the definition of automated
test cases for tools such as Selenium WebDriver. While different
tools support different ways to specify DOM locators, without
loss of generality we can map all such specifications to
XPaths and reason only about XPath locators. During software
evolution, such locators may need to be repaired, since they no
longer point to the right web page element and this happens
to be one of the major costs in web testware evolution [1].

In our previous work, we developed ROBULA [2], a tool
that implements a heuristic to generate robust XPath locators.
While preliminary results with ROBULA are quite promising,
the heuristic approach implemented in ROBULA suffers two
main problems: (1) there may exist cases in which it does not
return any locator in a reasonable amount of time, because
of the exponential complexity of the heuristic it implements;
(2) it may return a suboptimal locator even when it has enough
time to compute it, because it is not guaranteed to return the
optimal locator in case of convergence.

In this paper, we formulate the robust locator generation
problem as a graph search problem, so as to make it treatable by
means of meta-heuristic algorithms (e.g., genetic algorithms),
instead of relying on ad-hoc heuristics (as the one implemented
by ROBULA). Then we present two algorithms: (1) an exact,
greedy algorithm, that returns the global optimum, but requires
exponential time and space and for this reason (2) an approx-
imate genetic algorithm that tries to quickly find (at least)
sub-optimal solutions.

II. THE ROBUST LOCATORS GENERATION PROBLEM

Locator. Given a target web element e from the web page
DOM D, we call a locator for e every XPath expression l
such that query(l,D) = {e}, i.e., every XPath expression l able

to select uniquely e in D. Fig. 1, reports, on the upper left
corner, a simplified DOM D and a target web element e (the
first <p> highlighted in red). Usually, for each web element e,
there are many locators. Fig. 1 reports several XPath locators
for e underlined in green.

XPath expressions are composed by DOM element names
(i.e., tag names) and predicates. The former can be explicitly
specified in the XPath (e.g., //p) or left unspecified (e.g., //*). The
latter are used to limit the selection only to the DOM elements
that contain specific values. In particular, we consider position
values (e.g., //p[1]), attribute values (e.g., //p[@id=‘name’]), and
texts contained in the DOM elements (e.g., //p[text()=‘John’]).
We also consider XPaths containing conjunctions of
such predicates (e.g., //p[@id=‘name’ and text()=‘John’]. Let
Le={l : query(l,D)={e}} be the set of all XPath expressions
that are locators for e and that are built out of tag names
and predicates. Each XPath expression can be one or more
levels long. We define the length of an XPath as the number
of its levels, i.e., it is the number of ‘/’ or ‘//’ symbols
(e.g., the length of //p is 1, while for //html/p it is 2). In the
following, we refer to the action of specifying a tag name,
adding a predicate, or adding a new level to the current
XPath expression as a “specialization step”, executed by a
specialization transformation.
Robust Locator. In previous studies [2], we noticed that the
most robust XPath locators, i.e., the ones that are more likely to
survive to the evolution of the DOM D, are those that contain
as few names, predicates and levels as possible. Indeed, any
unnecessary information contained in a locator could vary in
the next evolved DOM and thus make the locator broken (an
information can be considered unnecessary if the expression
still remains a locator after removing it). To quantitatively
estimate the complement of robustness, we associate a fragility
coefficient FC to each XPath expression. The XPath //* has
FC=0. Every specialization step, that adds information to //*
increases the FC. The maximum fragility is reached by the full
absolute XPath, i.e., the expression containing all the names,
attributes, texts and position values of the target element e and
its ancestors up to the root html (see for instance the expression
//html[1]/p[text()=‘X’ and @class=‘a’][1] in Fig. 1).

In our previous studies [2], we found that adding different
predicates to an XPath leads to different levels of fragility.
For instance, adding a predicate on the position value makes,
usually, the XPath much more fragile than adding a predicate
on the ID attribute. Indeed, the position values heavily depend
on the structure of the page (e.g., adding a field in a form
breaks all the locators for the subsequent fields, if such locators
use position values) while the ID is usually meaningful and
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  <html> 
       <p class='a'>X</p> 
       <p class='a'>Y</p> 
       <div class='a'>X</div> 
  </html> 
 

Graph Ge 

Full Absolute XPath locator for the element e:      
  
 see step (7) 
 
 

e:   Target Web 
Element 

(1) (2) (3) (4) (5) (6) 

(7) 

Info for Ge: 
  80 N of  Vertices (XPaths) in Ge  64 of length 2 + 16 of length 1 
 1 N of  Vertices with InDegree = 0  i.e., only //* 
 16 N of  Vertices with OutDegree = 0  boxed   
 5 N of  Boundary Locators bold – underlined in green 
 49 N of  Locators underlined in green 

Step: 

//html[1]/p[text()='X' and @class='a'][1] 

Fig. 1. XPath expressions Graph

carefully chosen by developers. Thus, the various specialization
transformations increase the value of FC differently.
Specialization Transformation. Fig. 2 reports the considered
specialization transformations. They are similar to those used
heuristically by our tool ROBULA to generate robust locators [2].
Let us consider the XPaths obtained by starting from //* and
applying such transformations exhaustively, in all possible
orders and combinations. Let Xe={x : query(x,D) ⊇ {e}} be
the resulting set of XPath expressions. Each XPath x ∈ Xe

may select one or more elements in the DOM D, including
always the target element e (see how the transformations
work in Fig. 2); hence, Le ⊆ Xe. Starting from //*, each
transformation adds a constraint, consisting of tag name or
predicate, thus restricting the set of selected elements to a subset
of those selected by the original XPath. Hence, the exhaustive
exploration leading to Xe is monotonically decreasing in the
query output. Moreover, all possible combinations of tag names
and predicates are tried in the exploration. As a consequence,
no element of Le can be missed. This means that the set
of specialization transformations in Fig. 2 is complete, i.e.,
every unique locator l ∈ Le that includes only tag names and
predicates for a DOM element e can be generated by repeated
application of the transformations.
XPaths Generation Graph. The generation of the set Xe can
be described as the generation of a directed graph Ge(V ,E),
where the vertices in V are the XPath expressions in Xe

(i.e., V =Xe) and the oriented edges E represent the execution of
the various specialization transformations. Since the derivation
process is monotonically decreasing, the graph cannot contain
loops; hence, it is a DAG (Directed Acyclic Graph). Fig. 1
shows the DAG Ge for an element of a simplified DOM (the
target element <p> is underlined in red in the DOM). The
only vertex with in-degree = 0 is //*. All locators Le for e are

underlined in green in the graph Ge. The number of vertices
in Ge depends on: (1) h the number of levels between e and
the root of the DOM (i.e., the length of full absolute locator
for e) and (2) the cardinality of each Pi, the set of predicates
(i.e., attributes, text and position) that are applied at the i-th
level of the full absolute locator for e. More specifically:

|V | =
h∑

i=1

2(
∑i

k=1 |Pk|)+i = |Xe| (1)

For instance, in Fig. 1, for the target element <p> we have
a total number of levels h = 2. Counting backward from <p>,
these two levels are associated with two sets of predicates:
P1={text()=‘X’, @class=‘a’, position=1} and P2={position=1}.
The XPath expressions that contain only one level (leftmost part
of Fig. 1) start either with //* or //p. They are completed with
the addition of a subset of the predicates in P1 (including the
case of the empty set, e.g., in the case of //p). Since there are 2
possible starting XPaths, completed by any of the 2|P1| subsets
of P1, in total there are 2 · 2|P1| = 2|P1|+1 = 23+1 = 24 = 16
possible XPaths. The XPath expressions that contain two
levels start with //* or //html, possibly completed with the
addition of any subset of predicates from P2, and followed
by the next level, starting with /* or /p and completed
with any subset of predicates from P1. Hence, there are
2 · 2|P2| · 2 · 2|P1| = 2(|P1|+|P2|)+2 = 2(3+1)+2 = 26 = 64 pos-
sibilities. In total, |V | = 16 + 64 = 80.

Given a target element e, the problem of finding the locators
for e that minimise FC may require to visit, in the worst case,
the entire graph Ge. As apparent from Equation (1), the size
of graph Ge is exponential in the number of predicates and in
the number of levels. Indeed, in the running example, having
4 predicates and 2 levels leads to a graph Ge with more than
24+2 = 26 vertices.



Defined:
– w = the XPath expression to specialize, e.g., //td
– N = the length (in levels) of w

e.g., //td⇒ N=1; // ∗ /td⇒ N=2;
– E = the list of ancestor elements of target element e in the

considered DOM, starting and including e
e.g., [td, tr, table, body, html]
E.get(2) returns the element tr

The transformations work as follows:
– transfAddName replaces the ∗ in the initial //∗ with the tag

name of the element E.get(N)
e.g., // ∗ /td→ //tr/td

– transfAddPredicate adds the predicates (one at time) of
the element E.get(N) to the highest (i.e., the N-th) level in w.
The same predicate is not inserted twice.
e.g., //tr/td→ //tr[@name =‘data’]/td

– transfAddLevel adds //∗ at the top of w (iff N < E.length())
e.g., //tr/td→ // ∗ /tr/td

Note: the position value that must be used might change depending
on the element being selected, which can be either a ∗ or an actual
tag name (e.g., td). In fact, in the presence of siblings of different
types, the position for ∗ ranges over all such siblings, while the
position for a specific tag name ranges only over all siblings
having such tag name.
– transfAddPredicate: when adding the position value in the

XPath locator w, the transformation inserts the correct position
for locating the element L.get(N), depending on the use of a ∗
or of the actual tag name (e.g., td).

– transfAddName: if the unspecified tag name “*” is constrained
by a position value (// ∗ [2]), the transformation updates also
the position value (e.g., // ∗ [2]/b→ //div[1]/b).

Fig. 2. Specialization Transformations

To determine the fragility coefficient FC for each locator,
we associate the edges of Ge with a weight that depends
on the specialization transformation represented by the edge
(e.g., adding a predicate with a position has a higher weight than
adding a predicate with an ID attribute). We define function
fc : V → R, that associates each expression x ∈ V with the
fragility coefficient FC ∈ R, computed as the sum of the edge
weights encountered when navigating the graph backwards,
from x to //*. Although multiple paths can be found between the
root of Ge and the locator of interest, it can be easily shown that
they all provide the same value for FC. It can be also noticed
that FC can be equivalently computed by simply scanning the
names, predicates and levels composing the XPath expression
of the locator and summing up the respective weights.

Since specialization transformations add tag names, pred-
icates or levels, they always increase the fragility coefficient
FC associated with the current XPath expression by a certain
amount (the transformation weight). Hence, the value of FC in
each specialization path is strictly monotonically increasing.

Our goal is to determine one or more elements of Le that
have minimum value of FC, i.e., the optimal (i.e., most robust)
candidate locator(s). The vertices of Ge can be partitioned into
two. One partition contains the XPath expressions that are not
locators, whereas the second contains all the locators for e
(the 49 XPaths underlined in green in Fig. 1). The locators
with minimum FC are all at the boundary between these two
partitions (the 5 XPaths in bold and underlined in green in
Fig. 1). In fact, a locator v that does not belong to the frontier
between the two partitions has all its predecessors w that
must necessarily be also locators (otherwise v would be at the

boundary). Since the transition w −→ v is associated with a
non zero weight, w has lower FC and v cannot be an optimal
locator. However, some locators in the boundary could not be
optimal locators (e.g., //p[text()=‘X’] and //p[1] have different FC
values if we considered the position more fragile than the text).

III. ALGORITHMS FOR GENERATING ROBUST LOCATORS

A. Greedy Robust Locator Algorithm

The idea behind the greedy algorithm for finding a locator
with the lowest value of the FC, is to visit each vertex of
the graph Ge starting from the one having the lowest value
of FC (i.e., //*) and then moving to the next unvisited vertex,
choosing the one associated with the lowest value of FC. Based
on function fc : V → R, we can order the set V by increasing
values of FC. Different expressions in V may have the same
value of FC; hence, multiple permutations of V may satisfy
the order. The greedy algorithm visits the graph Ge following
one of the possible permutations of V satisfying such order.
Algorithm 1 reports a possible implementation.

Algorithm 1: Greedy Robust Locators Algorithm
Input:
D: DOM of the web page
e: target web element
Result:
l: a robust locator

1 begin
2 LV := ∅
3 // the visited vertices list
4 LG := “//*”
5 // the generated vertices list (in increasing order of FC). Each

unvisited vertex of Ge is first generated and then visited
6 while LG 6= ∅ do
7 x = LG.removeFirst()
8 LV .addLast(x)
9 if query(x,D) = {e} then

10 //x is a locator for e
11 return x

12 else
13 //x is not a locator for e
14 LX = specialize(x)
15 // the list of XPaths generated from x by applying all the

admissible transformations of Fig. 2
16 LX .removeElemOf(LV ) // removing already visited vertices
17 LX .removeElemOf(LG) // removing already generated vertices
18 foreach k ∈ LX do
19 FCk = fc(k)
20 insert k in LG preserving the order
21 // i.e., all the elements in LG preceding k must have a

FC<=FCk while the following ones have FC>FCk

The algorithm is ensured to terminate, since in the worst
case it returns the full absolute XPath. In fact, repeated
applications of the specialization transformations will eventually
generate the full absolute XPath, consisting of all the levels
with tag names and including all the needed predicates (in
case of tag ambiguity, the predicate on the position value is
always available to ensure disambiguation). The algorithm is
also ensured to return a global optimum (i.e., an XPath with
minimum FC). In fact, the list LG is kept ordered, so that the
first encountered locator, returned by the algorithm at line 9, is
ensured to have lower or equal FC than the other locators and
non-locators in LG. Non-locators will have an increased FC
if transformed into locators by any specialization, while the
other locators are equivalent to or worse than the returned one.



The worst-case complexity of the algorithm is exponential in
the number of predicates and in the number of levels, because
the number of vertices of Ge is exponential in the number
of predicates and in the number of levels (see Equation (1)).
Indeed, in the worst case the algorithm has to store all the
visited vertices in LV ; thus it is exponential in space. Moreover,
it might have to visit all the edges in Ge (line 14, each possible
specialization step), hence in the worst case it is also exponential
in time. The exponential complexity of the greedy algorithm
justifies the use of meta-heuristics like genetic algorithms, since
on instances of the problem that involve a large number of
levels and predicates the greedy approach could not terminate
in a reasonable amount of time.

B. Genetic Robust Locator Algorithm

In this section we provide a detailed specification of all the
elements needed to define a genetic algorithm (GA) that solves
the robust locator generation problem.
Chromosome: an XPath expression (e.g., //p[text()=‘X’]).
Population: a set of chromosomes, i.e., a set of XPath
expressions.
Gene: a portion of the chromosome that can be mutated and
altered. In the case of robust locator generation, the genes are
the various constructs composing the XPaths (i.e., in our case,
tag names, predicates, levels).
Mutation: a genetic operator that alters one or more gene values
in a chromosome from its initial state. In the case of robust
locator generation, we define mutations as the specialization
transformations reported in Fig. 2 and their inverses. Thus,
it is possible to add or remove a tag name, a predicate (on
attributes, text and position values) and add/remove a level.
Applying the inverse of a specialization transformation reported
in Fig. 2 means navigating the graph backwards (note that not
all the specialization transformations can be applied to every
XPath). For instance, the expression //html/p can be mutated in
//html[1]/p or //*/p, see Fig. 1.
Crossover: a genetic operator that creates new chromosomes
by combining a pair of “parent” chromosomes. In the case of
robust locator generation, we consider as crossover points the
XPath level separators ‘/’. Thus, in case of two XPaths one
level long, crossover cannot be applied. In case of XPaths
two levels long or more, the one-point crossover can be
applied. For a given crossover point (e.g., the ‘/’ separating
first from second level in the two XPaths), all data beyond that
point in both XPaths are swapped between the two parent
chromosomes. For instance, from the full absolute XPath
//html[1]/p[text()=‘X’ and @class=‘a’][1] (“Step 7” in Fig. 1), and
//*/* (the last XPath of column “Step 1”), it is possible to
generate in one step: //*/p[text()=‘X’ and @class=‘a’][1] (the first
XPath of column “Step 5”) and //html[1]/* (the last XPath of
column “Step 3”). Similarly, with XPaths that are three or
more levels long, it is possible to apply also the two-point
crossover operator. Given two fixed level separators in the
XPaths, it swaps everything between the two points of the
parent chromosomes, producing two child chromosomes.
Fitness function: We apply two different fitness functions to
two subpopulations of the current population Pop. Chromo-
somes are partitioned into Pop’ and Pop”. Pop’ contains all
XPaths from Pop that are not locators. These need to be further
specialized to select only element e. The best chromosomes in

Pop’ are those that select a small number of DOM elements,
including e. Pop” contains all XPaths from Pop that are locators
for e. Among them, we give preference to those with lower
FC. Hence, the fitness function fit for the XPath expressions x
is differentiated for the two subpopulations Pop’ and Pop” as
follows:

fit(x) =
{|query(x,D)| query(x,D) 6= {e}
fc(x) query(x,D) = {e} (2)

For the chromosomes of Pop’ (i.e., the XPaths x for
which query(x,D) 6= {e}), the fitness function fit requires
to minimize the number of web page elements selected by
x. For the chromosomes of Pop” (i.e., the locators of e for
which query(x,D) = {e}), the fitness function fit requires to
minimize the fragility coefficient FC.

Hence, trying to minimize the fitness function fit means two
different things for the two subpopulations Pop’ and Pop”: (1) to
add constraints to the expressions that are not locators (Pop’);
and (2) to simplify as much as possible the locators, trying to
remove all unnecessary information (Pop”). In practice, both
forces push the XPath expressions in the current population
towards the boundary between locators and non-locators in
the graph Ge, i.e., towards the frontier where the most robust
locators are (i.e., those with the lowest value of FC).

The initial population Pop0 can be obtained by: (1) gener-
ating the full absolute XPath and adding it to Pop0; (2) adding
each XPath obtained by removing each level from the full
absolute XPath; (3) adding //*. Thus, the initial population
contains both expressions that are locators (e.g., the full absolute
XPath) and others that are not locators (e.g., //*). Then the
algorithm proceeds iteratively as follows: (1) it computes the
fitness function fit for each chromosome x; (2) it selects the
chromosomes that have lower fit values, separately for the two
subpopulations Pop’ and Pop” (e.g., taking the best 50% of the
locators and the best 50% of the non-locators); (3) it produces
the next generation of chromosomes by applying the genetic
operators crossover and mutation. The algorithm terminates
when the full graph Ge has been explored or the timeout has
been reached. Upon termination, it returns the set of locators
with minimal FC generated during the evolutionary process.

IV. CONCLUSIONS AND FUTURE WORK

We have formulated the problem of generating robust XPath
locators as a graph search problem, for which we have provided
an exact and a meta-heuristic solution, based on a genetic
algorithm. In our future work, we will implement the algorithms
and compare them with each other, with ROBULA, and with
the multi-locator [3], both in terms of accuracy and scalability.
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