
Copyright: 

© 2015 Springer International Publishing Switzerland 

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-26844-6_8 

A Method for Requirements Capture and Specification 

based on Disciplined Use Cases and Screen Mockups 

Gianna Reggio, Maurizio Leotta, Filippo Ricca 

 

 

Abstract: 

We present a novel method for capturing and writing requirements specifications that 

enriches disciplined use cases with screen mockups. Disciplined use cases are characterized 

by a quite stringent template, which allows to impose a large number of constraints helping to 

prevent common mistakes and to increase the quality of the specifications. Disciplined use 

cases are expressed using natural language, but the strong structuring allows to reach a good 

level of precision without having to introduce new (and more complex) notations. Screen 

mockups associated with the steps of the scenarios present the corresponding GUIs as seen 

by the human actors before/after the step executions, improving the comprehension of the 

requirements, and allowing also to precisely present non-functional requirements of the user 

interface. The method has been successfully applied in an industrial project and the 

effectiveness of the screen mockups has been validated by means of controlled experiments. 

 

 

 

Digital Object Identifier (DOI): 

http://dx.doi.org/10.1007/978-3-319-26844-6_8 



A Method for Requirements Capture and Specification
based on Disciplined Use Cases and Screen Mockups

Gianna Reggio, Maurizio Leotta, Filippo Ricca

DIBRIS, Università di Genova, Italy
{gianna.reggio, maurizio.leotta, filippo.ricca}@unige.it

Abstract. We present a novel method for capturing and writing requirements
specifications that enriches disciplined use cases with screen mockups. Disciplined
use cases are characterized by a quite stringent template, which allows to impose
a large number of constraints helping to prevent common mistakes and to increase
the quality of the specifications. Disciplined use cases are expressed using natural
language, but the strong structuring allows to reach a good level of precision
without having to introduce new (and more complex) notations. Screen mockups
associated with the steps of the scenarios present the corresponding GUIs as seen
by the human actors before/after the step executions, improving the comprehen-
sion of the requirements, and allowing also to precisely present non-functional
requirements of the user interface. The method has been successfully applied in an
industrial project and the effectiveness of the screen mockups has been validated
by means of controlled experiments.

1 Introduction
A number of methods, techniques and approaches have been proposed in literature for
representing software requirements. Among them, use cases are a widely used technique
to specify the purpose of a software system, and to produce its description in terms
of interactions between actors and the subject system [5]. However, even presented
by means of use cases, the requirements could be difficult to comprehend, incomplete,
inconsistent, contradictory and may cause/provoke defects in the software system under
development.

Screen mockups (also known as user interface sketches, user interface prototypes
or wireframes) are used for prototyping the user interface of a subject system [7, 9].
Mockups can be used in conjunction with use cases, associating them with the steps of
the scenarios, to improve the comprehension of functional requirements and to achieve a
shared understanding on them. Simultaneously, they allow to represent the non-functional
requirements concerning the user interface [6]. However, enriching the use cases with
the screen mockups arises the problem of guaranteeing that the mockups are coherent
with the textual part of the use cases, and that they truly provide information on how to
structure the GUIs supporting the functionalities presented by the use case.

As a matter of fact, the consistency between use cases and screen mockups cannot be
guaranteed if the former are poorly structured and have a low level of precision. Require-
ments specifications based on use cases may have very different levels of precision from
scarcely structured scenarios made by lists of freely formed natural language sentences,



to use cases presented following quite detailed and structured templates, for example
Cockburn [5], till to methods where the use cases are represented by means UML mod-
els [2] or even by formal specifications [4]. We believe that disciplined natural language
specifications, i.e. where the text must follow very detailed and stringent patterns [10,
8] and a glossary of terms is added to reduce ambiguity, are a good compromise. For
this reason, we have conceived a method for capturing and describing requirements
specifications based on disciplined use cases and screen mockups, taking the Cockburn
guidelines as starting point. Disciplined use cases are: (1) characterized by a high level
of precision without having to introduce additional notations and the consequent effort
required to learn and to use them, (2) suitable to be enriched in a consistent way with
the screen mockups, and (3) able to help the requirements analyst to detect errors, in-
completeness, bad smells (e.g. unused elements), and bad quality factors (e.g. too many
extensions and too many steps in a scenario) in the requirements specification (thanks to
many well-formedness constraints).

Even if Screen Mockups are quite common in many industries and several proposals
are emerging to integrate/use them in conjunction with use cases (or more in general
with requirements) [15, 17], our method is the only one that allows to obtain consistent
screen mockups that are fully integrated in the development process, and thus that are
not just a bunch of drawings added to the use cases. To the best of our knowledge, this is
the main novelty aspect of our work.

This paper extends our previous work [11], where we described the template of
disciplined use cases and how to integrate screen mockups, with: (i) the description
of a comprehensive method for capturing and writing requirements specifications (see
Section 2), (ii) some details on the empirical assessment of the method (see Section
3), and (iii) the complete list of well-formedness constraints for the precise use cases
integrated with screen mockups (see Appendix A).

2 Requirements Capture and Specification using Disciplined Use
Cases and Screen Mockups

The starting point of our method (see Fig. 1) is what we call a “free use case specification”,
i.e. a use case specification based on whatever template, in general allowing a lot of
freedom to the specification writers. In case not yet available, the free specification may
be easily produced by stakeholders or domain experts with or without the assistance of
the analyst.

Once the free specification has reached a stable form, the analyst may start the task
of making the use case disciplined and adding the screen mockups (i.e., as described
in [11], and verifying that the well-formedness constraints shown in Appendix A hold).
Obviously, the result of such activity is the detection of inconsistencies (i.e. two different
points of the specification express two contrasting statements about something), ambi-
guities (i.e. the specification uses words without stating their precise meaning relying
on some common, but not always shared, understanding), and incompleteness (i.e. it
is not possible to understand how the system should work in some specific cases). In
these cases the analyst should ask the stakeholders and/or the domain experts additional
information to be able to obtain a disciplined use case specification equipped with screen



Fig. 1. Requirements Capture and Specification using Disciplined Use Cases and Screen Mockups

mockups; notice that also adding the screen mockups may generate many questions
about the system under specification.

Once the analyst has terminated her/his work, the resulting disciplined specification
augmented with screen mockups may be given to the stakeholders to get the final
approving. They have no problem in reading and understanding it, since it is essentially
structured natural language text; moreover the presence of the screen mockups offers a
kind of paper prototyping, allowing them to validate also the user interface. Any change
request may be easily processed by the analyst because the strong structuring of our use
case specifications offers a good support to trace the influence on the whole specification
of a change. This characteristic of our specifications will be valuable also on the case of
future evolution of the requirements on the system.

3 Empirical Assessment
In this section we describe (1) how our method has been fine-tuned during several
editions of a software engineering course at the University of Genova [1], and (2) how
we evaluated its applicability in the industry through a case study. Moreover, we evaluated
by means of a series of controlled experiments: (1) the effectiveness of screen mockups
in improving the comprehension of functional requirements [12, 14], and (2) the effort
required to build the screen mockups [13, 16].

3.1 Students Projects
The proposed method has been used during several student projects in several editions of
the software engineering courses in the last decade at the University of Genova, where
two of the authors of the present paper were teaching. Each year, students had to realize
a Java desktop application whose requirements, produced by ourselves, were given as a
use case based specification. First, students had to model a design by means of UML, and
then, they had to implement it in Java [1]. Initially, no screen mockups were used, and
even if standard requirements on the GUIs were provided (i.e. usability requirements), the
use cases often resulted difficult to understand and ambiguous for what concerns the user
interaction. For example, a use case step for EasyCooking — a software helping to write



recipes and diets — requiring “to list foods” was interpreted by all the students as “to list
the complete nutritional details of foods” while the intention of the requirements authors
was simply to list the names of such foods. We discovered that, after the introduction of
screen mockups the number of misunderstanding about the required user interactions
decreased, and moreover, we witnessed that the effort of producing the screen mockups
had as a “side effect” that various ambiguities/incompleteness even mistakes were
discovered during the writing of the requirements specification. Some examples of the
disciplined requirements specification with screen mockups for the students projects
may be found at http://sepl.dibris.unige.it/2015-UseCasesMockups.php.

3.2 Industrial Case Study

Our method has been applied with success during a joint project [3] involving the Univer-
sity of Genoa, Italy, and two local companies, having the goal of developing the EC2M
system. Such system consists in an improved ECM making use of ontologies to better
classify, retrieve and share documentation among different branches of the companies.
The functionalities offered by EC2M can be classified as: interactive and non-interactive:
the first allow the user(s) to interact with EC2M using GUIs (e.g. logging in and insert-
ing/retrieving documents) while the latter focus on the interactions between software
systems using specific protocols (e.g. exchanging information or documentation using
SOAP and REST). Since our method has been devised for describing the requirements
specification of interactive software systems, in this project we applied our method only
for the portion of requirements describing the interaction between the EC2M system and
the user(s).

Creating the Free UC Specification. As described in Section 2 our method takes a
free UC specification as input. Using the information gained in the course of the first
two meetings with our industrial partners, we developed a preliminary version of the
UC specification, composed by 12 use cases and three primary actors. The free UC
specification reflects the requirements as informally expressed by the industrial partners
(i.e. the two local companies) during the meetings. For this reasons, later, we discovered
that there were several problems, for instance: (1) the meaning of the terms reported in
the use cases was not always agreed by all the partners (the glossary is missing in this
phase), (2) the granularity of the actions described in the use cases steps was not uniform
(some too abstract and others too detailed), and (3) only a few extensions to the main
success scenarios were reported.

Making the UC Specification Precise. Starting from the free UC specification, we
first developed a “precise UC specification” (i.e. complying with the Well-formedness
constraints listed in Table 1) asking, when needed, the industrial partners some clarifi-
cations. In this way, we greatly improved the quality of the requirements specification.
e.g. by adding the Glossary, leveling out the granularity of the steps (e.g. subdividing a
single step in more steps), redefining some actors, and considering new scenarios. Once
the “precise UC specification” was settled, we added to it the screen mockups verifying
that they comply to the well-formedness constraints (see Table 2). We chose to associate
the mockups with the most relevant steps whose subject was EC2M. In this phase, the
Pencil tool has been used; it proved to have the capability to quickly create realistic
screen mockups.



Verifying Stakeholders Requirements. Finally, we organized a meeting where the
“precise UC with screen mockup specification” has been shown to the industrial partners.
That occasion has been very useful for identifying some misunderstandings between
our understanding of the EC2M system and what the industrial partners really desired.
Moreover, the screen mockups have allowed to perform a sort of prototype verification
helping the industrial partners to detect problems difficult to find inspecting only textual
use cases. After the meeting we fixed the identified problems. The final specification
was composed by 15 use cases with the relative descriptions, three primary actors, two
secondary actors, 11 glossary entries, and 10 screen mockups.

During the project’s meetings, the industrial partners found the screen mockups (and
the glossary) very effective to improve the comprehensibility of the use cases and useful
to find the ambiguities in the requirements specification. As an example, the EC2M
system allows to semantically classify the documents by means of an ontology and at
the same time the ontology allows to search documents using semantic tags. Since an
ontology is a quite complex object, several ways can be chosen to graphically represent
and use it. They are strongly different for what concerns, for instance, the usability
perspective. The creation of screen mockups for the steps related to the usage of the
ontology allowed to: (1) improve the understanding of the operations involving the
ontology for non-experts, and (2) precisely define the kind of interactions required to
the system users in order to complete the steps mentioned above. The professionals
involved in the creation of the functional requirements specification for EC2M were
satisfied of the method. One of them at the end of the project reported the following
phrase: “discipline and mockups are two essential ingredients to improve the quality and
comprehension of requirements!”.

4 Conclusion and Future Work
In this work we have proposed a novel method for capturing and specify requirements of
a software system. The novelty is the integration and synergy between screen mockups
and use cases. In fact, the proposed method produces disciplined use cases and coherent
screen mockups that are fully integrated in the development process. The positive aspects
of the requirement specifications produced with our method are: – easier to comprehend
(thanks to the screen mockups), – less prone to inconsistencies (thanks to the glossary), –
less prone to incompleteness (thanks to the strong constrains on the form of the scenarios),
– and in general of “good quality” since checking the many well-formedness constraints
associated with our template results in a deep and strongly structured inspection.

It is important to note that differently from specifying use cases using formal lan-
guages or modelling notations our specifications may be read and understood also by
non-experts. On the other side, the production of this kind of requirements specifications
requires an extra effort compared to producing use case specifications adhering to a very
loose template, and obviously the knowledge of our quite precise template.

The method has been successfully applied in an industrial project and used for many
years in software engineering student’s projects at the University of Genova.

As future work, we intend to implement a supporting tool able to: 1) help in the
creation and visualization of the requirements specifications using our format, and
2) automatically check the compliance of the requirements specifications to the various
well-formedness constraints.



References
1. E. Astesiano, M. Cerioli, G. Reggio, and F. Ricca. A phased highly-interactive approach

to teaching UML-based software development. In Proceedings of Educators Symposium at
MoDELS 2007, pages 9–18. University of Goteborg, 2007.

2. E. Astesiano and G. Reggio. Knowledge structuring and representation in requirement
specification. In Proceedings of 14th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2002, pages 143–150. ACM, 2002.

3. D. Briola, A. Amicone, and D. Laudisa. Ontologies in industrial enterprise content man-
agement systems: the EC2M project. In Proceedings of 5th International Conference on
Advanced Cognitive Technologies and Applications, pages 153–160. IARIA, 2013.

4. C. Choppy and G. Reggio. Improving use case based requirements using formally grounded
specifications. In M. Wermelinger and T. Margaria-Steffen, editors, Fundamental Approaches
to Software Engineering, volume 2984 of LNCS, pages 244–260. Springer, 2004.

5. A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.
6. J. Ferreira, J. Noble, and R. Biddle. Agile development iterations and UI design. In Proceed-

ings of Agile Conference, AGILE 2007, pages 50–58, 2007.
7. H. R. Hartson and E. C. Smith. Rapid prototyping in human-computer interface development.

Interacting with Computers, 3(1):51–91, 1991.
8. M. Leotta, G. Reggio, F. Ricca, and E. Astesiano. Towards a lightweight model driven method

for developing SOA systems using existing assets. In Proceedings of 14th International
Symposium on Web Systems Evolution, WSE 2012, pages 51–60. IEEE, 2012.

9. M. O’Docherty. Object-Oriented Analysis and Design: Understanding System Development
with UML 2.0. Wiley, 1 edition, June 2005.

10. G. Reggio, M. Leotta, F. Ricca, and E. Astesiano. Business process modelling: Five styles
and a method to choose the most suitable one. In Proceedings of 2nd International Workshop
on Experiences and Empirical Studies in Software Modelling, EESSMod 2012, pages 8:1–8:6.
ACM, 2012.

11. G. Reggio, F. Ricca, and M. Leotta. Improving the quality and the comprehension of require-
ments: Disciplined use cases and mockups. In Proceedings of 40th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2014, pages 262–266. IEEE, 2014.

12. F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano. On the effectiveness of
screen mockups in requirements engineering: results from an internal replication. In Proceed-
ings of 4th International Symposium on Empirical Software Engineering and Measurement,
ESEM 2010, pages 17:1–17:10. ACM, 2010.

13. F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano. On the effort of
augmenting use cases with screen mockups: results from a preliminary empirical study.
In Proceedings of 4th International Symposium on Empirical Software Engineering and
Measurement, ESEM 2010, pages 40:1–40:4. ACM, 2010.

14. F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano. Assessing the effect of
screen mockups on the comprehension of functional requirements. ACM Transactions on
Software Engineering and Methodology, 24(1):1:1–1:38, Oct. 2014.

15. J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, F. Montero, and M. Gaedke. Mockup-driven
development: Providing agile support for model-driven web engineering. Information and
Software Technology, 56(6):670 – 687, 2014.

16. G. Scanniello, F. Ricca, M. Torchiano, C. Gravino, and G. Reggio. Estimating the effort
to develop screen mockups. In Proceedings of 39th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2013, pages 341–348, 2013.

17. J. Zhang, C. Chang, and J. Y. Chung. Mockup-driven fast-prototyping methodology for web
requirements engineering. In Proceedings of 27th International Computer Software and
Applications Conference, COMPSAC 2003, pages 263–268. IEEE, 2003.



A Precise Use Cases with Screen Mockups Specification
Well-formedness Constraints

See [11] for the definition of the form of the requirement specification based on disci-
plined use cases augmented with screen mockups.

• A summary use case cannot be included in either a user-goal or a subfunction use case.
• A user-goal use case cannot be included in a subfunction use case.
• A summary use case must have the goal and the stakeholder parts.
• If a use case C includes C1 in the use case diagram, then at least a line corresponding to “include C1”
must appear in the description of C, and vice versa (i.e. every inclusion in the use case descriptions must
appear in the use case diagram).
• If a use case C extends C1 in the use case diagram, then at least a line corresponding to an extension
point for C must appear in the description of C1, and vice versa (i.e. every extension point in the use case
descriptions must correspond to an extension relationship in the use case diagram).
• The actors listed in the use case descriptions should be in accord with those appearing in the use case
diagram and vice versa.
• Each listed actor of a use case must appear at least in one step of its scenarios.
• The subject of a step of a scenario different from the system, must appear among the use case actors.
• If a use case has no actors, then it must have a trigger?.
• If a step has a condition cond different from true, then there should be some extensions starting from the
same step with conditions cond1, . . . , condn s.t. the logical disjunction of cond, cond1, . . . , condn is true.
• Each complete scenario must include at least a step where the subject is the system.
• All the initial steps of a set of extensions starting from the same point must have the same subject.
• Each data listed in the glossary must appear at least in one step of a use case.
• Each system attribute listed in the glossary must at least:
– appear in the effect part of a step of a use case,
– appear either in the condition or in the interaction part of a step of a use case.
? (e.g. a use case describing a periodic activity made by the system each hour)

Table 1. Well-formedness constraints for Requirements Specification

Actor as Subject and Initial Mockup (i.e., at the beginning of the step)
• Let S0, S1, . . . , Sn (n ≥ 0) be some steps having an actor as subject s.t. S1, . . . , Sn are the first steps of
extensions starting from S0, and let M be the initial mockup of S0, S1, . . . , Sn.
– If the interaction part of Si (0 ≤ i ≤ n) refers to some communication from the actor to system, then
some means to represent it must appear in M (e.g. when S0=“Client confirms”, S1=“Client refuses”, and
two buttons “Confirm” and “Refuse” appear in M).
– If M contains some means for realizing some communication from the actor to system, then there should
be Si (0 ≤ i ≤ n) referring to such interaction.

Actor as Subject and Final Mockup (i.e., at the end of the step)
• Let S1, . . . , Sk (k ≥ 1) be some steps having an actor as subject, and let M be the final mockup of S1,
. . . , Sk (S1, . . . , Sk must be steps having the same interaction part appearing in different scenarios of even
different use cases).
– If the interaction part of S1 (that it is coincident with those of S2, . . . , Sk) refers to some communication
from the actor to system, then M should show how it is going to be realized (e.g. the step S1 has the form
“User confirms the deletion”, and in M there is a button “Confirm Deletion”; notice that this step may
represent the confirmation of different kinds of deletions).
– If the interaction part of S1 (that it is coincident with those of S2, . . . , Sk) includes a reference to some
specific information (flowing from the actor to system), then such information must appear in some way in
M (e.g. “Actor inserts the password” and “password” appears in M).
– If M shows how some communication is going to be realized (from the actor to system), then the interac-
tion part of step S1 (that it is coincident with those of S2, . . . , Sk) should refer to it.

System as Subject and Mockup
• Let S1, . . . , Sm (m ≥ 1) be some steps having the system as subject, and let M be the final mockup of
S1, . . . , Sm (S1, . . . , Sm must be steps having the same interaction part appearing in different scenarios of
even different use cases).
– If some information appears in M, then it should be derived by the interaction parts of the previous steps
or by the system attributes (e.g. in M appears “You are logged as John Doe”, and the name of the current
logged user “John Doe” is recoverable by the system attributes or it was provided by the user in some
previous step).
– If the interaction part of S1 (that it is coincident with those of S2, . . . , Sm) refers to some communication
from system to actor, then some means to represent such communication must appear in M (e.g. “System
confirms the required deletion” and either a pop-up or a message box containing a sentence equivalent to
“deletion confirmed” appears in M).

Table 2. Well-formedness Constraints for Screen Mockups


