
Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Towards the Generation of End-to-End Web Test

Scripts from Requirements Specifications

Diego Clerissi, Maurizio Leotta, Gianna Reggio, Filippo Ricca

Abstract:

Web applications pervade our life, being crucial for a multitude of economic, social and

educational activities. For this reason, their quality has become a top-priority problem. End-

to-End testing aims at improving the quality of a web application by exercising it as a whole,

and by adopting its requirements specification as a reference for the expected behaviour. In

this paper, we outline a novel approach aimed at generating test scripts for web applications

from either textual or UML-based requirements specifications. A set of automated

transformations are employed to keep textual and UML-based requirements specifications

synchronized and, more importantly, to generate End-to-End test scripts from UML artefacts.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/REW.2017.39

Towards the Generation of End-to-End Web Test
Scripts from Requirements Specifications

Diego Clerissi, Maurizio Leotta, Gianna Reggio, Filippo Ricca
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy

diego.clerissi@dibris.unige.it, maurizio.leotta@unige.it, gianna.reggio@unige.it, filippo.ricca@unige.it

Abstract—Web applications pervade our life, being crucial for
a multitude of economic, social and educational activities. For this
reason, their quality has become a top-priority problem. End-to-
End testing aims at improving the quality of a web application
by exercising it as a whole, and by adopting its requirements
specification as a reference for the expected behaviour. In this
paper, we outline a novel approach aimed at generating test
scripts for web applications from either textual or UML-based
requirements specifications. A set of automated transformations
are employed to keep textual and UML-based requirements
specifications synchronized and, more importantly, to generate
End-to-End test scripts from UML artefacts.

Index Terms—Web Testing, Requirements Specification, Use
Case, UML, Automatic Test Generation, Selenium WebDriver.

I. INTRODUCTION

In the last years, web-based software has become the key
asset in a multitude of everyday activities. For this reason,
effective testing approaches aimed at increasing the quality of
web applications are of fundamental importance.

End-to-End testing is a relevant approach for improving
the quality of complex web systems [8]: web applications are
exercised as a whole, testing the full-stack of technologies
implementing them. It is a type of black box testing based on
the concept of test scenario, i.e. a sequence of steps/actions
performed on the web application (e.g. insert username and
password, click the login button, etc.).

A requirements specification expressed as use cases can
be employed as a reference for the correct behaviour of a
web application, and can be used to derive the test cases.
Screen mockups are additional artefacts used in conjunction
with use cases to represent the interface of a web application
before/after the execution of each scenario step; they can
improve the comprehension of functional requirements, and
can also be used for the non-functional ones [11]. Moreover,
the introduction of a glossary, to precisely describe the
terminology referred by use cases, can enforce the requirements
specification understandability, reducing also ambiguities which
may originate from unclear or complex sentences. A method
providing well-formedness constraints over such entities would
thus produce a precise and of high quality requirements
specification [11], also in a highly dynamic context as the
Web. Indeed, use cases plus screen mockups naturally describe
how a web application should be tested in terms of its behaviour,
as perceived by the users, and the glossary may clarify the
data used by test cases, as well as the performed instructions.

Despite their wide adoption for describing requirements,
textual use cases and, more generally, natural language pro-
cessing techniques, cannot directly support automated test cases
generation [4]; instead, different notations (e.g. UML) may
provide a more structured and formal view, exploitable by
existing tools. For example, state machines integrated with
screen mockups can intuitively represent the system behaviour
as navigational paths, basis for future test cases generation.

In this paper, we present a novel approach for generating
End-to-End test scripts (i.e. executable test cases) for web
applications from a precise requirements specification, either
textual or UML-based. A precise requirements specification
satisfies a set of well-formedness constraints aimed at improv-
ing the overall quality and making the specification suitable
for test scripts generation. Precision can also clarify how the
functionalities of the web application have to be developed
and tested, hence a specification compliant to such rules may
work as a reference manual. To generate a specification, the
analyst may choose the perspective (s)he is more confident
with (i.e. textual or UML) and, by means of an automated
transformation, derive the other one with a little effort. An
additional automated transformation is applied on the UML
artefacts to generate End-to-End test scripts. Our proposal is
currently tailored to the generation of test scripts for web
applications, but with some adjustments it could be used to
test also different kinds of systems (e.g. mobile apps).

Even though the generation of UML artefacts from use
cases and consequent test cases extraction has been already
investigated (for example, [14], [6], [12]), to the best of our
knowledge, our approach is the first one trying to generate
End-to-End test scripts for web applications completely aligned
with their requirements specifications, where textual and UML-
based specifications are automatically synchronized, and screen
mockups are integrated in the process and functionally complete
to be exercised by the test scripts.

The proposed approach is intended to be supported by a
prototype tool, to assist the final user in the definition of the
requirements specifications, and in the automated artefacts
generation (e.g. UML diagrams, test scripts). The tool will
provide a user-friendly and step-by-step interface, where
manual intervention is reduced as much as possible.

Section II provides an overview of the approach, Sections III
and IV describe the textual and the UML-based requirements
specifications respectively, while the transformations between
the specifications and into the testware are discussed in

Sections V-VI. Related works are shown in Section VII, and
finally conclusions and future work are given in Section VIII.

II. THE APPROACH

The aim of our approach is to generate test scripts for a
web application given its requirements specification as input.
Fig. 1 provides an overview of the approach, which is based
on three main automated transformations.

The textual requirements specification is usually the starting
point of the approach, and is characterized by a use case
diagram, textual use cases, HTML screen mockups, and a
glossary introducing the used terminology. Use cases are
adopted since they naturally represent the behaviour of a
system as structured scenarios. Screen mockups are embodied
in use cases steps to enhance the overall comprehension of the
requirements [11], and to support the ensuing automated test
generation and execution [1]; in fact, they visually describe
how the web application GUI should appear, and how it should
react to users’ interactions [11].

The UML-based requirements specification is instead charac-
terized by a use case diagram, use cases given in the form of
state machines with attached screen mockups1, and a static view
(i.e. a class diagram) defining the used data, the operations
over them, and the interactions among the actors and the
web application. In our proposal, each kind of specification
is defined by means of a metamodel accompanied by a set of
well-formedness constraints [2].

Finally, the testware is the output of the approach; it includes
the test suite, grouping the automatically generated End-to-End
test scripts that cover all interesting aspects described in the
requirements specification, the screen mockups over which the
test scripts instructions are performed, and the auxiliary classes
coding the data, the operations over them and the occurring
interactions.
1 Among the variety of UML diagrams, we chose state machines to represent
use cases, since they naturally describe the behaviour of a web application in
terms of reactions to users interactions. Sequence diagrams may be employed
as well, but usually require a larger number of constructs and may result more
complex to understand, whereas activity diagrams are less suitable to represent
the interactions between users and web application.

M
o

d
el

2M
o

d
el

tr

an
sf

o
rm

at
io

n
s

Text2UML

UML2Text

UML2Test

T
e

x t
u

a l

R
e

q
u

ir
em

en
ts

S

p
e c

if
ic

a
ti

o
n

U
M

L
-b

a
se

d

R
e

q
u

ir
e

m
en

ts

S
p

e c
if

ic
a t

io
n

T
es

tw
a

re

}

HTML
SCREEN MOCKUPS

HTML
SCREEN MOCKUPS

USE CASE DIAGRAM

USE CASES

USE CASE DIAGRAM

STATE MACHINES

GLOSSARY

STATIC VIEW

TEST SUITE

TEST SCRIPTS
AUXILIARY
CLASSES

HTML
SCREEN MOCKUPS

}

M
o

d
el

2T
ex

t
tr

an
sf

o
rm

at
io

n
s

Fig. 1. The proposed approach: an overview.

The Text2UML and UML2Text transformations aim at
moving between the textual and the UML-based requirements
specifications. More specifically, Text2UML transforms use
cases into state machines, and the glossary into the static view.
Instead, UML2Text generates use cases from state machines,
and the glossary from the static view. Notice that the screen
mockups and the use case diagram are untouched by the
transformations; in fact, they are complementary elements
in both kinds of requirements specifications. Text2UML and
UML2Text are Model2Model transformations, since they rely
on the metamodels defining the form of the textual and the
UML-based requirements specifications. Finally, UML2Test
is a Model2Text transformation generating the code of the
testware from the UML artefacts.

The approach is applicable from scratch, using Test Driven
Development (TDD) to drive the development of a novel
application, as well as to test already existing web applications,
having at hand a precise form of their requirements specifica-
tions. If screen mockups are adopted in TDD, they could be the
basis for web pages development, since they are functionally
complete to be exercised by the test scripts [1].

Our approach allows to skip a textual formulation of the
requirements (that is the reason of the surrounding dashed
line in Fig. 1, indicating optionality), starting directly from
UML, from which a textual counterpart can be automatically
derived. Having two different perspectives gives more freedom
to the analyst, who may alternatively choose a simpler textual
solution to be transformed into UML models or directly adopt
UML in case of high professional skills. However, the testware
is generated from UML only, as shown in Fig. 1, since UML
represents use cases in a more structured and formal way.

From now on, we use the term WebApp to denote a generic
web application we want to test, after having specified its
requirements. Our running example is PhoneBook, a simple
web application storing phone contacts info. The complete
PhoneBook textual and UML-based requirements specifications
can be found in [2].

III. TEXTUAL REQUIREMENTS SPECIFICATION

A textual requirements specification consists of an UML
use case diagram summarizing the use cases, a glossary that
lists and makes precise all the terms used in the use cases, a
description of each use case, and a set of HTML screen mock-
ups associated with use cases steps. A textual requirements
specification is precisely defined by a metamodel (see Fig. 22)
accompanied by a set of well-formedness constraints [2].

A. Use Case Diagram

The use case diagram summarizes the WebApp use cases,
making clear the actors (i.e. the users of the WebApp) taking
part in them, and their mutual relationships. It is actually an
UML diagram, but quite simple to understand and to produce,
and useful to summarize the use cases, so there is no need of
a more detailed presentation.

2 Omitted multiplicities in associations are intended to be 1.

Fig. 2. The textual requirements specification metamodel.

B. Glossary

The glossary is a list of entries, introducing all the terms
appearing in the use cases, each one consisting of a name, and
of a definition. A portion of the PhoneBook glossary is shown
in Fig. 3.
The glossary entries are distinguished in:

1) Data: the types of the data mentioned in the use cases.
They have form “name is a type”, where type is either a basic
type (e.g. string, int, bool), a Cartesian product, or a sequence
of types. For example, in Fig. 3 we have “Name is a string”,
and “Entry is a Name X Phone X Group”.

2) Attributes: the properties abstractly describing the updat-
able state of the WebApp. They have form “name has type
Data”, where Data is a (sequence of a) previously defined
data. For example, in Fig. 3 we have “LoggedUser has type
Username” and “RegisteredEntries has type sequence(Entry)”.

3) Operations: the functions performed over data and
attributes to set/get their content. They have form “namepart1
Data1 . . . namepartn Datan [returns Data]”, where each Data
is a previously defined data and the operation may have or not
a return type. The semantics of the operations is given in a
structured textual form. For example, in Fig. 3 we have “N:
Name is well formed returns bool”, which checks that the size

Data
Name is a string
Phone is a string
Group is a string
Entry is a Name X Phone X Group
Username is a string
…
Attributes
LoggedUser has type Username
RegisteredEntries has type sequence(Entry)
…

Operations
N: Name is well-formed returns bool
 means size of N is less than 32
exists entry N: Name returns bool
 means RegisteredEntries includes <N, -, - >
…
User → PhoneBook Interactions
requests to add a new entry
 [click: “addNewEntry”]
enters entry details Name and Phone
 [enter: “name”, “phone”]
…

Fig. 3. A portion of PhoneBook glossary.

of a Name N is less than 32, where “size of”, “is less than”
and “32” are predefined functions over strings and integers.

4) Interactions: the atomic interactions between the ac-
tors and the WebApp and vice versa. They have form
“namepart1 Data1 . . . namepartn Datan”, where each Data has
been previously defined. For example, in Fig. 3 we have
requests to add a new entry, and enters entry details Name
and Phone. The parts enclosed by square brackets are explained
in Section III-D.

C. Use Cases Description
In our proposal, use cases follow a slight adjustment of

Cockburn’s template [3]. Each use case is described by some
info, plus a set of scenarios (see an example of a PhoneBook
use case in Fig. 4).

The use case attributes are the data needed to describe the
use case, each one is characterized by a name and typed by a
data introduced in the glossary. In Fig. 4, two attributes are
declared: Name N and Phone P, where Name and Phone are
data defined in the glossary (see Fig. 3).

The preconditions state what we assume about the current
state of the WebApp before the execution of the associated
use case (optional). They are expressions built using the
data, the attributes and the operations defined in the glossary,
and are shared among all the scenarios composing the use
case description. In Fig. 4, a precondition concerning the
authentication of the user is introduced.
The main success scenario describes the basic execution of the
use case, whereas the extensions (any number, also none) define
all the other possible executions. Scenarios are sequences of
uniquely numbered and ordered steps, each one structured as
the following, where square brackets indicate optionality:

[if Condition, then] Subject Interaction; Effect*. [Continuation.]
The Condition determines the step executability and is formu-
lated as the previously described preconditions; for example,

<N, P, none > is added to RegisteredEntries. ValidEntryPage

Extensions:
5a.1 If not N is well-formed, then PhoneBook shows invalid name. InvalidEntryPage
5b.1 If exists entry N, then PhoneBook shows entry already exists. InvalidEntryPage

Fig. 4. PhoneBook Add Entry use case.

in Fig. 4 a condition is associated with step 5 and checks if
the entry name is well-formed and not already present in the
registered entries (the definitions of these operations are given
in the glossary, see Fig. 3). The Subject of a step is either
an actor or the WebApp, while the Interaction is a sentence
describing either what flows from the actor towards the WebApp
or vice versa; interactions must be formulated by using those
listed in the glossary, like the underlined sentences in the
use case steps of Fig. 4. The Effects of a step are sentences
written by using the operations (having a side effect) listed
in the glossary, describing how the WebApp state changes
depending on the Interaction; for example, at the end of step 5
in Fig. 4, a new entry is added to the registered ones. Finally,
the Continuation defines how the use case flow continues after
the end of the step; it may be a jump to a step different from
the following one or a sentence declaring the success or the
failure of the use case execution. If there is no Continuation, it
means that the flow continues to the following step.

Successful scenarios can optionally be associated with
postconditions, as shown in Fig. 2, which are expressions
built similarly to preconditions, but specific for a completed
scenario.

D. Screen Mockups

The screen mockups are GUI sketches representing accurately
- from a functional point of view - the interfaces of a WebApp.
Our approach requires to produce the screen mockups using
the HTML, since it is the most convenient way to describe a
WebApp GUI in terms of interactive web elements. For each
use case step, a begin and an end screen mockup can be linked
as placeholders [11] (i.e. hyperlinks to the corresponding files)
to represent how the GUI looks before and after the step
execution. At least one mockup is needed for each step, since
a step describes some interactions performed over the web
elements. For example, in Fig. 4, a screen mockup is linked at
the end of each step.

Any screen mockup associated with a step must be consistent
with it, i.e. it should present the same informative content,
otherwise the introduction of the mockup would be the cause
of ambiguities in the requirements specifications, instead of
improving their quality [11]. The consistency between mockups
and use cases steps is granted by a set of well-formedness
constraints to be satisfied while creating the mockups and
writing the steps [2]. An example of a simple screen mockup
associated with a use case step is shown in Fig. 4; the

Fig. 5. The UML-based requirements specification metamodel.

AddEntryPage mockup is linked to step 3 and contains all
the web elements and all entered data to perform the step
interaction.

The web elements of the screen mockups affected by the
interactions in use cases steps must be made explicit. This is
achieved by annotating the interactions in the glossary with the
locators3 of the involved web elements. Annotations have form
[kind: locator1, . . . , locatorn], where kind represents the kind
of interaction performed over the web elements (e.g. enter,
click), and locator1, . . . , locatorn are strings identifying them
(see the Annotation class in Fig. 2). Different types of locators
exist [9], e.g. identifier, class name, or link text; in this work,
for the sake of simplicity, locators are limited to identifiers. In
Fig. 3, the interaction enters entry details Name and Phone,
used in the step 3 of the use case shown in Fig. 4, is annotated
by [enter: “name”, “phone”], stating which web elements of
AddEntryPage mockup allow to perform it (i.e. the textfields
localized by “name” and “phone”).

IV. UML-BASED REQUIREMENTS SPECIFICATIONS

An UML-based requirements specification has a similar
structure of a textual one, even though the parts are expressed
using the UML constructs instead of plain text. Then, it consists
of a use case diagram, a description of each use case, given by
a state machine with associated screen mockups, plus a static
view (i.e. a class diagram) defining the used data, the attributes,
the related operations, and the interactions among the actors
and the WebApp. A UML-based requirements specification is
again precisely defined by a metamodel (see Fig. 5) and a set
of well-formedness constraints [2].

In the following, the use case diagram is omitted, since it is
already discussed in Section III-A.

A. Static View

The static view is a class diagram basically equivalent to
the glossary part of the textual requirements specification. It
contains:

1) Datatypes: the UML datatypes defining the data needed
to express the requirements. For example, in Fig. 6 we have
Name and Phone, each one containing string values.

2) Web App: the UML class modelling the WebApp. It
is stereotyped by �webapp� and contains the attributes
describing its updatable state and the interactions performed
by the actors towards the WebApp. For example, in Fig. 6,
PhoneBook class has RegisteredEntries attribute, storing all

3 a locator is a hook pointing to a specific web element inside the DOM of
an HTML page; it is used to retrieve the web elements the test script interacts
with (e.g. find the link that must be clicked) [8]

Fig. 6. A portion of PhoneBook static view.

the entries in the WebApp, and entersEntryDetails interaction,
called by actors whenever a new entry is added.

3) Actors: the UML classes modelling the actors, hence
containing the interactions performed by the WebApp towards
them. Each actor class is stereotyped by �actor� and must
be connected to the WebApp class by an association, named
as the actor itself. For example, in Fig. 6 User class has
showsEntryAdded interaction, used by the WebApp to inform
the user about an entry added successfully.

4) Operations: the UML operations performed over data
and attributes. They are static, can have or not a return type,
and are grouped in the abstract class Operation (stereotyped
by �operations�). The definitions of the operations are given
in attached notes and expressed using UML action language4;
in the UML terminology, the definitions in the notes are the
methods associated with such operations. For example, in Fig. 6
the note attached to isWellFormed operation of the Operation
class describes whenever a Name N can be considered well-
formed, in a similar way to the glossary part shown in Fig. 3.

B. Use Cases Description

In the UML perspective, the description of a use case
includes some info analogous to those of the textual use cases,
but the behaviour of the WebApp is here described by a state
machine instead of a set of scenarios.

The use case attributes are declared in a note stereotyped by
�attributes�, and have form “name : type”, where the type
is a datatype defined in the static view (see Fig. 7).

The preconditions are OCL expressions put in notes attached
to the starting states of the state machine. In Fig. 7, the
precondition refers to oclIsDefined predefined OCL operation
and is equivalent to the one given in Fig. 4.

The transitions of the state machine, representing the
interactions among the actors and the WebApp, have one of
the following forms:
– Interaction [Condition] / Effect*, if the transition corresponds to

an interactions from an actor towards the WebApp. Interaction
is an event built by an interaction of the WebApp class,
Condition is a boolean OCL expression, and Effect* are either
calls of operations of the Operation class or basic UML
actions, in any case updating the WebApp state. In Fig. 7,
the third transition is an event built by entersEntryDetails
interaction of the WebApp, which uses the declared use case

4 http://www.omg.org/spec/ALF/1.0.1/PDF/

Fig. 7. PhoneBook Add Entry state machine.

attributes to add a new entry. The transition is semantically
equivalent to step 3 of Fig. 4.

– [Condition] / ACTOR.Interaction ; Effect*, if the transition
corresponds to an interactions from the WebApp towards
an actor. Interaction is an event built by an interaction of
the ACTOR class, while the other parts are the same as
before. In Fig. 7, the last transition on the left includes:
a condition calling some operations over the entered Name N,
showsEntryAdded interaction of the User class, and the effect
of updating the current WebApp state with the entered entry,
by calling a basic UML action. The transition is semantically
equivalent to step 5 of Fig. 4.
Similarly to use cases, postconditions can optionally be

associated with successful paths (i.e. those ending in a state
labelled by OK, see Fig. 7), as OCL expressions put in notes
attached to the ending states.

C. Screen Mockups

In the UML perspective, screen mockups are associated with
the transitions and the states of the state machines modelling
the use cases behaviours. More specifically, if the transition
corresponds to an interaction of the WebApp towards an actor,
a single screen mockup is linked to the transition target state.
Instead, if the transition corresponds to an interaction of an
actor towards the WebApp, then at most two mockups can
be linked: one to the transition source state, and one to the
transition arrow head. At least one mockup is needed for
each transition. An example of a screen mockup attached to a
transition arrow head is given in Fig. 7.

As well as in the textual perspective, screen mockups must be
consistent with the transitions they are linked to [11]. Moreover,
the web elements of the screen mockups that are affected by
the interactions in the state machines (e.g. entersEntryDetails
of Fig. 7) must be explicitly referred in the static view, where
such interactions are defined. In the UML perspective, this
connection is achieved by employing tagged values. A tagged
value encapsulates the kind of interaction performed and strings
representing the locators of the web elements. The form adopted
by tagged values for an interaction is {kind = locator1, . . . ,
locatorn}. For example, entersEntryDetails interaction of the
WebApp class is associated with the tagged value {enter =

“name”, “phone”}, indicating that the data about name and phone
will be entered in the textfields identified by “name” and “phone”
strings.

V. TRANSFORMATIONS BETWEEN TEXTUAL AND
UML-BASED REQUIREMENTS SPECIFICATIONS

In our proposal, the transformations are initially described
from a high level perspective, and then refined in details by a
decomposition stage, where additional sub-transformations are
involved.

Each (sub-)transformation shows how a source entity (e.g. a
use case step) is transformed into a target entity (e.g. a state
machine transition). The procedure of abstractly describing
transformations from source to target universes has been
inspired by Tiso et al. [13].

A (sub-)transformation is characterized by a name, an
informal description in natural language declaring its goal,
and a graphical representation of how source entities are
transformed into target ones, including additional calls to further
sub-transformations, in case a decomposition stage is needed.

The complete set of (sub-)transformations between specifi-
cations can be found in [2].

A. Text2UML and UML2Text

Text2UML and UML2Text (shown as the bi-directional
grey arrow in Fig. 1) are the Model2Model transformations
between textual and UML-based requirements specifications.
For space reasons, we just sketched UML2Text and omitted
Text2UML, which is basically the inverse of the former.
UML2Text transforms a UML-based requirements speci-

fication into a textual one and is composed of several sub-
transformations, each one handling a different part of it. The
main transformation is defined on top of Fig. 8: on the left,
the source UML-based requirements specification; on the right,
the target textual requirements specification, where each part
is generated by sub-transformations calls.

More specifically, UCD transforms a UML-based use case
description into a textual one, while Glossary transforms
the datatypes, the attributes, the operations and the interactions
defined in the static view into glossary entries. The use
case diagram is instead kept unaltered. Again, further sub-
transformations compose UCD (Fig. 8, below), generating
the actors, the use case attributes, the preconditions, and the
scenarios respectively. Scenarios takes a state machine in
input and generates the main and the alternative scenarios from
its paths, each one characterized by a sequence of transitions
from the starting to an ending state.

Given a state machine and its corresponding use case, the
number of individual paths and scenarios is the same, thus
use cases and state machines can be considered isomorphic
in terms of transformations. The states of a state machine
having multiple leaving transitions are the extensions points
determining the various scenarios in the corresponding use case
description; e.g. the last state in the state machine in Fig. 7
is the extension point for 5, 5a.1, and 5b.1 use case steps
in Fig. 4.

UC Diagram

Static View

UC Description₁

UC Diagram

UCD(UC Description)
…
UCD(UC Description)

Glossary(Static View)

UC Description

UC Description

...
1

n

1

n

UC Attributes

State Machine

Preconditions

UML2Text

Use case: UC Name
Actors: Actors(State Machine)
Attributes: Attributes(UC Attributes)
Preconditions: Exp(Preconditions)
Scenarios(State Machine)

UC Name

UCD

 transforms a UML-based requirements specification into a textual one

transforms a UML-based use case description into a textual one

Fig. 8. (Above) UML2Text: from a UML-based to a textual requirements
specification. (Below) UCD: from a UML-based to a textual use case
description.

s1
interaction [condition] / effect

s1-s2 if Exp(condition), then Inter(interaction); Effs(effect).

GenerateStep
transforms a state machine transition into a use case step

s2

Fig. 9. GenerateStep: from a state machine transition to a use case step
(an interaction from an actor towards the WebApp).

Among the activities we omitted, Scenarios calls
GenerateStep, sketched in Fig. 9, which transforms a
transition into a step; Exp, Inter, and Effs handle with
conditions, interactions, and effects respectively. As shown
in Fig. 1, screen mockups are not affected by the process;
however, since they are part of both requirements specifications,
transformations will attach them to the corresponding step
(in the textual perspective) or transition/state (in the UML
perspective).
UML2Text and Text2UML will be implemented using the

ATL language of the Eclipse Modeling Project5, by now the
standard for Model2Model transformations and also highly
supported, well-documented, and integrated in Eclipse IDE.

VI. TRANSFORMATION FROM A UML-BASED
REQUIREMENTS SPECIFICATION TO A TESTWARE

In our proposal, the testware is generated from the UML
models, and is characterized by:
• Test Scripts: composed of instructions coding the transitions

of state machines paths.
• Test Suite: the collection of all the Test Scripts and the general

settings needed for their execution.

5 https://www.eclipse.org/atl/

• Auxiliary Classes: all the code corresponding to the entities
defined in the static view, i.e. data, attributes, operations and
interactions, used in Test Scripts instructions.

• Screen Mockups: the HTML pages describing the WebApp
GUI over which the Test Scripts instructions are performed.

For the aim of this paper, we decided to code the testware com-
ponents in Java, relying on the state-of-the-practice Selenium
WebDriver testing framework6, which is a popular solution for
web applications testing, providing APIs to control the browser
and interact with the web elements [8].

The complete set of (sub-)transformations moving from a
UML-based requirements specification to a testware can be
found in [2].

A. UML2Test

UML2Test is the Model2Text transformation responsible
for the testware generation from a UML-based requirements
specification (last grey arrow in Fig. 1), and is based again on
several sub-transformations. The various UML constructs are
separately transformed into code, as shown on top of Fig. 10.
More specifically, TestSuite gives the structure of the test
suite, hence grouping the test scripts together as driven by the
use case diagram, TestScripts transforms a UML-based
use case description (i.e. a state machine) into several test
scripts, each one covering a specific path, while AuxClasses
generates the code representing the content of the static view,
needed to formulate the test scripts instructions.
TestScripts has to handle the various paths of the state

machine representing the behaviours of a use case; different
algorithms solving minimum-cost flow problems may be used
to extract paths from the state machine (e.g. [7]). Thus, it
creates a class for all the tests scripts separately covering the
state machine paths and calls, for each path, TestScript
(Fig. 10, below). TestScript transforms a path into a test
method of the previous class: the use case attributes become
the parameters of the method, since they represent the entered
data, pre/post conditions are naturally treated as assertions
(notice that, since postconditions are specific for successful
paths, they are taken directly from the current path, if any),
and the transitions composing the path are translated into
test instructions by Instructions. For each transition,
Instructions differentiates the ones having an actor as
subject from those having the WebApp; the latter are treated
as assertions, since the WebApp may have to notify/show to
the user the details about the content of a web page. To make
test scripts directly executable, a last instrumentation step for
feeding the code with the proper input data is necessary; in this
work, we have chosen to make test scripts parametric in terms
of the declared use case attributes, but our goal is to investigate
towards smarter solutions (e.g. search-based testing).
UML2Test will rely on Acceleo7, which is an OMG

standard for Model2Text transformations and, again, is well-
documented and embodied in Eclipse IDE.

6 http://www.seleniumhq.org/projects/webdriver/
7 https://www.eclipse.org/acceleo/

TestSuite(UC Diagram)

TestScripts(UC Description)
…
TestScripts(UC Description)

AuxClasses(Static View)

n

1

UML2Test

public void runTest(Params(UC Attributes)){
Preconditions(Preconditions)
Instructions(SM Path)
Postconditions(SM Path)

}

TestScript

 transforms a UML-based requirements specification into a testware

transforms a path of a UML-based use case description into a test script

UC Diagram

Static View

UC Description₁UC Description

UC Description

...
1

n

UC Attributes

SM Path

Preconditions

Fig. 10. (Above) UML2Test: from a UML-based requirements specification
to a testware. (Below) TestScript: from a path of a UML-based use case
description to a Java test script.

Here follows a simplified Selenium WebDriver test script
(i.e. a method) generated from a path of the state machine
shown in Fig. 7;

public void runTest(Name N, Phone P){
assertTrue(PhoneBook.LoggedUser != null); //precond
PhoneBook.requestsToAddNewEntry(); //transition 1
assertTrue(User.asksForEntryDetails()); //transition 2
PhoneBook.entersEntryDetails(N, P); //transition 3
PhoneBook.confirmsEntryDetails(); //transition 4
//transition 5
assertTrue(Operation.isWellFormed(N) &&

!Operation.existsEntry(N));
assertTrue(User.showsEntryAdded());
PhoneBook.RegisteredEntries.add(new Entry(N, P, null));

}

It represents the scenario of adding a valid entry to Phone-
Book. All instructions are calls to attributes or methods of the
auxiliary classes, generated by AuxClasses (i.e. PhoneBook,
User, and Operation), representing the operations over the
data and the interactions between the user and the WebApp.
Such interactions encapsulate Selenium WebDriver APIs; for
example, entersEntryDetails is a method of the WebApp class
and represents a sendKeys command, i.e. it enters Name N
and Phone P in the corresponding textfields.

VII. RELATED WORKS

Many works investigate in the relationships between use
cases (and, more generally, requirements) and testing artefacts
and how to get the latter from the former. Yue et al. [14]
proposed an automated approach to generate state machines
from restrained use cases, according to a set of transformation
rules; by means of a model-based testing technique applied
over the state machines representing the system, test cases are
extracted. Somé implemented the UCEd tool8 to transform

8 http://www.site.uottawa.ca/ ssome/Use_Case_Editor_UCEd.html

simplified use cases into a state model, from which abstract
test cases representing use cases scenarios are extracted. Jiang
et al. [5] proposed an approach to automatically generate
test cases from use cases, whose descriptions are constrained
to predefined sentences. Use cases lead in the generation
of Extended Finite State Machines (EFSM), where paths
corresponding to test cases can be drawn. Moreover, changes
in the use cases are reflected to EFSMs, hence providing the
alignment between requirements and tests. Olek et al. [10]
introduced a Test Description Language to record manual
interactions occurring on web GUI sketches, attached to use
cases steps, and code them into test cases instructions. In this
work, the aid of a specific tool to capture the interactions
and of a language to represent such interactions are essential.
Cucumber9 is a behaviour-driven development software tool to
describe requirements of applications in a structured way and
use them as a guidance for the development and testing phases.
Functionalities follow restrained scenarios adhering to a given,
when, then template, from which test cases instructions are
generated.

Our approach differentiates from the aforementioned ones
since, in our case, the final output are executable test cases
directly runnable over a web application. In our proposal, the
requirements specifications, both textual and UML-based, are
made precise and are integrated with the screen mockups,
which empower the overall comprehension and also help in
the subsequent testing process. Moreover, the vocabulary of
usable terms to formulate use cases sentences is not restrained,
thus provides more freedom and customization. Finally, the
definition of a requirements specification compliant to our
proposal will not require much effort or a long training, since
in the future it is intended to be tool-assisted, and could be
helpful in the implementation of the web application, given
that the flow of interactions occurring among the users and the
WebApp are made explicit and precise.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we sketched a novel approach for web appli-
cations aimed at defining a precise requirements specification,
either textual or expressed using the UML, and at generating
from it a functionally complete set of test scripts. Textual
and UML-based requirements specifications are semantically
equivalent, thus the analyst is left free to choose from which
one to start. Two transformations are employed to automatically
move between the textual and the UML perspectives, and an
additional transformation generates the testware from UML.
The approach is currently tailored for web applications, whose
requirements should be precisely specified (e.g. banking, e-
commerce/payments systems, government services), having
functionalities clearly described in terms of GUI and interac-
tions - hence using the requirements specification as a sort
of user manual - and with the need for an intensive testing
process to enforce their reliability.

We are currently working on implementing the various
transformations and including them in a prototype tool, aimed

9 https://cucumber.io/

also at reducing the manual effort needed to apply our proposal
(e.g. by supporting the specification of use cases satisfying
the well-formedness constraints) as much as possible. Making
requirements specifications precise, even if tool-assisted, is
an onerous task, but the preliminary effort is rewarded in
the last stage of the approach, where the testing artefacts are
automatically derived and kept aligned with the requirements.
As future work, we plan to empirically evaluate such effort
w.r.t. different approaches based on manual or semi-automatic
test generation, and to investigate its applicability on different
technologies and domains (e.g. mobile) and on larger/more
complex systems. We are also oriented in studying the
maintainability cost of the requirements specifications and
the testware during the web application natural evolution,
and in improving the proposal by generating also portions
of the web application itself. Finally, we intend to investigate
the generation of input data for the test scripts, for example
employing search-based testing techniques.

REFERENCES

[1] D. Clerissi, M. Leotta, G. Reggio, and F. Ricca. Test driven development
of web applications: A lightweight approach. In Proceedings of
10th International Conference on the Quality of Information and
Communications Technology (QUATIC 2016), pages 25–34. IEEE, 2016.

[2] D. Clerissi, G. Reggio, M. Leotta, and F. Ricca. Additional material:
reference manuals for precise textual and UML-based requirements
specifications methods, PhoneBook specifications, and transformations.
http://sepl.dibris.unige.it/2017-RET.php.

[3] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.
[4] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner.

Arsenal: Automatic requirements specification extraction from natural
language. In NASA Formal Methods Symposium, pages 41–46. Springer,
2016.

[5] M. Jiang and Z. Ding. Automation of test case generation from textual
use cases. In Proceedings of 4th International Conference on Interaction
Sciences (ICIS 2011), pages 102–107. IEEE, 2011.

[6] S. Kansomkeat and W. Rivepiboon. Automated-generating test case
using UML statechart diagrams. In Proceedings of SAICSIT 2003, pages
296–300. South African Institute for Computer Scientists and Information
Technologists, 2003.

[7] J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.
[8] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Approaches and tools for

automated end-to-end web testing. Advances in Computers, 101:193–237,
2016.

[9] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+: An algorithm
for generating robust XPath locators for web testing. Journal of Software:
Evolution and Process, 28(3):177–204, 2016.

[10] Ł. Olek, B. Alchimowicz, and J. Nawrocki. Acceptance testing of web
applications with test description language. Computer Science, 15(4):459,
2014.

[11] G. Reggio, M. Leotta, and F. Ricca. A method for requirements capture
and specification based on disciplined use cases and screen mockups.
In Proceedings of 16th International Conference on Product-Focused
Software Process Improvement (PROFES 2015), volume 9459 of LNCS,
pages 105–113. Springer, 2015.

[12] P. Samuel, R. Mall, and A. K. Bothra. Automatic test case generation
using UML state diagrams. IET software, 2(2):79–93, 2008.

[13] A. Tiso, G. Reggio, and M. Leotta. Unit testing of model to text
transformations. In Proceedings of 3rd Workshop on the Analysis of
Model Transformations (AMT 2014), pages 14–23. CEUR, 2014.

[14] T. Yue, S. Ali, and L. Briand. Automated transition from use cases to
UML state machines to support state-based testing. In Proceedings of
ECMFA 2011, pages 115–131. Springer, 2011.

