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Abstract. Internet of Things (IoT) applications and systems pervade our life in-
creasingly and assuring their quality is of paramount importance. Unfortunately,
few proposals for testing these complex — and often safety-critical — systems
are present in the literature and testers are left alone to build their test cases.
This paper is a first step towards acceptance testing of an IoT system that relies
on a smartphone as principal way of interaction between the user and a complex
system composed by local sensors/actuators and a remote cloud-based system. A
simplified mobile health (m-health) IoT system for diabetic patients is used as an
example to explain the proposed approach.

1 Introduction

Internet of Things (IoT) is a network of interconnected physical objects and devices
that share data through secure infrastructures and transmit to a central control server in
the cloud. As the IoT technology continues to mature, we will see more and more novel
IoT applications and systems emerging in different contexts. For example, trains able to
dynamically compute and report arrival times to waiting passengers, cars able to avoid
traffic-jam by proposing alternative paths and m-health systems able to determine the
right medicament dose for a patient.

Ensuring that IoT applications are secure, reliable, and compliant is of paramount
importance since IoT systems are often safety-critical. At the same time, testing these
kinds of systems can be difficult due to the wide set of disparate technologies used to
build IoT systems (hardware and software) and the added complexity that comes with
Big Data (the three “V”, huge volume, great velocity and big variety).

To the best of our knowledge, IoT software testing has been mostly overlooked
so far, both by research and industry [15]. This is evident if one looks at the related
scientific literature, where proposals and approaches in this context are extremely rare.

In this work, we propose a novel approach for acceptance testing of IoT systems
using a UI (in our specific case study, a smartphone) as principal way of interaction
between the user and the system. The approach is performed at the system level and is
based on two main ingredients: virtualization and the usage of automated visual testing
tools that are able to drive the UI (i.e., the smartphone). We focus on acceptance test-
ing, a type of black box testing based on the concept of test scenario, i.e., a sequence



of actions performed on the system interfaces, which is considered by many organiza-
tions [14]1 the most effective way to ensure the quality of a fully deployed system. In
fact, assembling the system and testing it as a whole is the most logical and effective
way to ensure the quality. At the same time, this task can also be quite challenging for
complex IoT applications.

This paper is organized as follows: Section 2 presents an invented but realistic test-
ing scenario based on a mobile health IoT system. Section 3 describes our proposal
for acceptance testing of IoT systems, with examples and a detailed description of the
used testware. Finally, Section 4 presents the related works comparing them with our
proposal, followed by conclusions and future work in Section 5.

2 The Testing Scenario: a Diabetes Mobile Health IoT System

We have chosen a diabetes mobile health IoT system as testing scenario for two reasons.
First, these systems are incredibly difficult to test and no consolidated approaches have
been proposed for them in literature. Second, many software apps for smartphones and
IoT systems are now available for diabetes and are intended to assist patients to make
decisions for themselves in real time [7].

This proliferation of apps and systems is due to the fact that diabetes is a very com-
mon disease that doubles a person’s risk of early death. Just to give two estimates [2]:
422 million people have diabetes worldwide (2016) and the World Health Organiza-
tion (WHO) reports that diabetes resulted in 1.5 million deaths in 2012, making it the
8th leading cause of death [1]. Insulin therapy is often an important part of diabetes
treatment and it is injected to the patient to keep the blood glucose level low.

2.1 The Scenario

Let’s suppose the following fictitious but realistic scenario. A Company has completed
the implementation of its DiaMH system after several months of work and now it has
to be tested. DiaMH is a Diabetes Mobile Health IoT system that: (1) monitors the
patient’s glucose level, (2) sends alerts to the patient and the doctor when a glucose level
or a pattern of glucose levels is out of a pre-specified target range, and (3) regulates
insulin dosing. DiaMH, sketched in Fig. 1, consists of the following components: a
wearable glucose sensor, a wearable insulin pump, a patient’s smartphone, a doctor’s
smartphone and a cloud-based healthcare system. Glucose sensor and insulin pump are
devices (respectively, the sensor and the actuator) connected to the smartphone that is
used as a “bridge” between them and the cloud-based healthcare system. Moreover, the
smartphone is used by the patient to visualize the glucose tendency and give commands
to the system, e.g., to accept the novel dose of insulin suggested by DiaMH. The cloud-
based healthcare system is the core of DiaMH and is able to process big data and turn
it into valuable information (alerts and novel doses of insulin). The complete list of
functionalities of DiaMH is explained in the next subsection.

A thorough testing phase is required because the Company would like to request
FDA (US Food and Drug Administration) to include DiaMH on its approved list. The

1 in [14] this kind of testing is called end-to-end testing.



Fig. 1. Components and actors of DiaMH

boss of the Company is aware that it will be difficult because few treatment apps for
any disease have been approved by the FDA to actually make decisions or treatment
recommendations [7]. For this reason, she forms a team of testers and selects as project
manager the best one in the Company. His fancy name is Jim.

The team has three months of time for: (1) selecting a testing approach, (2) pro-
ducing a test plan, (3) implementing the testware, i.e., the testing infrastructure2, and
(4) testing the system. The challenge seems impossible because DiaMH is a complex,
real-time, safety critical IoT system.

Jim knows that for convincing his boss to apply to the FDA he has to quickly realize
a testware able to determine whether DiaMH satisfies the acceptance criteria (accep-
tance testing).

After having surfed the Internet and consulted the literature, Jim discovers that there
are no well-documented approaches that can be used for acceptance testing purposes.
He found only very general non-scientific papers concerning testing of IoT systems3

and several proposals for testing bioinformatics software (e.g., [3]). Unfortunately, these
works cannot be used for his purpose since they do not describe a specific solution for
testing a complex m-health IoT system like DiaMH. Jim is desperate. What should he
do? After a first moment of discouragement a possible idea “takes shape”4 in his mind.

A possible way to determine whether DiaMH satisfies the acceptance criteria is
using two ingredients: test automation tools/frameworks and mock devices (e.g., vir-
tual or simulated ones). Test automation tools are used to execute test scripts in unat-
tended way, report the results, and compare them with earlier test runs. Test automation
tools/frameworks [9] control the execution of test scripts giving commands directly on
the UI (e.g., the smartphone interface) and reading actual outcomes to be compared with
predicted outcomes. Mock devices are pieces of software that mimic the behaviour of
real devices (e.g., the glucose sensor) in controlled ways (e.g., providing glucose pro-

2 Testware includes artifacts produced during the test process such as, test scripts, inputs, ex-
pected results, set-up and clear-up procedures, files, databases, environment, and any addi-
tional software or utilities used in testing.

3 e.g., https://devops.com/functional-testing-iot/
4 note that since DiaMH is a safety critical system, also other verification techniques, not con-

sidered in this paper, should be applied (e.g., runtime verification [12], model checking [4]).



files of different kinds of diabetics patients). The idea taking shape in Jim’s mind is
building a set of acceptance test scripts for the acceptance criteria that, when executed,
can drive the DiaMH system execution giving commands on the smartphone UI, as a
real patient does, and verifying the correctness of the DiaMH system through the UI
interface.

2.2 DiaMH Functionalities, Components and Protocols

This section specifies the functionalities of DiaMH, clarifies the role of the components,
and sketches possible protocols to be used for implementing DiaMH. The following
description has been inspired by two previous works: a Parasoft white paper [14] and
the paper by Istepanian et al. [6].

The glucose sensor (e.g., SugarBeat R©5) is a pain-free, non-invasive, needle-free
sensor, that monitors the blood for detecting the glucose level, and performs measure-
ments in timed intervals (sampling). The intervals can be set by the patient using the
smartphone with a specific command (e.g., at 15 minutes intervals). Moreover, an-
other command performs measurements on request. The glucose sensor is wirelessly
connected to an app on the smartphone. The app stores the values locally and provides
a UI so that the user can monitor the glucose levels in the blood and compare them with
historical data. More precisely, glucose data are displayed on the smartphone screen
with symbols that represent the direction and value of glucose. Other data displays in-
clude graphic representations indicating the glucose pattern over varying periods of
time. The app running on the smartphone, in addition to provide simple analyses and
charts to the user, transmits glucose level data to a cloud-based healthcare system for
persistent storage and additional analyses.

The insulin pump follows a programmed schedule controlled wirelessly by the
smartphone. Smartphone, glucose sensor and insulin pump use the Bluetooth Low en-
ergy technology6 to communicate among them. MQTT7 is the protocol used in the
communication between smartphones, sensors, actuators, and healthcare system.

The healthcare system running on the cloud is the core of the DiaMH IoT system. It
stores the data of all the patients, compares them to historical data, performs advanced
analyses, computes the insulin quantities that should be injected by the insulin pump
and sends alerts to the doctor and patient in case of danger, i.e., when problematic pat-
terns are identified. To perform the analyses and control the insulin pump, the healthcare
system uses cognitive computing, machine learning algorithms and, in general, artificial
intelligence mechanisms. Indeed, establishing the “correct” dose of insulin is incredi-
bly complex, since the insulin requirements are affected by the individual’s physiology,
the type and duration of daily activity, work schedule, exercise, illness and concomitant
medications [13]. The alert sent to the patient contains some data, such as a guidance
for the next steps and changes to the insulin dose (if any) to be delivered to the insulin
pump. After the patient’s approval, changes to the insulin dose are transmitted to the
pump and set. When a problematic pattern is identified (i.e., something that requires

5 http://www.nemauramedical.com/sugarbeat/
6 https://en.wikipedia.org/wiki/Bluetooth_low_energy
7 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html



immediate medical attention which cannot be solved only by injecting a certain quan-
tity of insulin), the healthcare system sends an alert directly to the user’s app and to the
doctor’s app. The alert sent to the doctor contains the GPS coordinates of the patient
and a summary of her medical conditions.

3 Acceptance Testing for Healthcare IoT systems: a Proposal

Testing the example system described in the previous section poses significant chal-
lenges, given that DiaMH is composed of several components (applications and devices
containing logics) working together and with risk of individual fail. Moreover, further
problems could derive by the integration of the components. Indeed, it is well-known
that an “imperfect” integration can introduce a myriad of subtle faults.

In general, a complete test plan should include a combination of unit testing (com-
ponents should be isolated and tested early), integration testing (components should be
tested as a group, proceeding, e.g., bottom-up), and acceptance testing, and should be
conducted at two different levels:

1. testing a virtualized version of DiaMH, where real hardware devices are not em-
ployed. In their place, Virtual devices (e.g., a mock glucose sensor) have to be
implemented and used for stimulating the applications under test. At this level the
goal is testing only the software produced by the Company, i.e., the apps (for pa-
tients and doctors) running on the smartphones and the healthcare system running
in the cloud. Thus, possible unwanted behaviours of DiaMH due to hardware or
network problems cannot be detected in this setting.

2. testing the real IoT DiaMH system complete of applications and devices (i.e.,
glucose sensor and insulin pump). The goal here is testing the system in real con-
ditions, i.e., under real world scenarios like communication of the application with
hardware, network, and other applications

Since the system is safety-critical, both testing phases should be conducted because
the former (i.e., on the virtualized system) could favour earlier implementation prob-
lems detection and could potentially reveal more faults (timings of sensors and actuators
can be made shorter and thus a huge quantity of tests can be run in a short time). More-
over, since DiaMH is a safety critical system, other useful verification techniques should
be applied (e.g., runtime verification [12], model checking [4]), but these are out of the
paper’s goal. In this work, we mainly focus on phase (1) because: it is the first one that a
test team has to face, it can be conducted without employing real sensors and actuators
that can be complex to use/set and more expensive. Indeed, imagine how could be com-
plex to test a dangerous life threatening scenario using a real glucose sensor. Moreover,
since devices used in m-health systems are usually certified, they are not the main rea-
son of failure of the entire system. Finally, we focus on acceptance testing because this
phase seems to be neglected more than the others in the IoT domain, since the specific
peculiarities of testing an IoT system (e.g., composed by different platforms, relying on
various communication protocols, and including complex behaviours of smart-devices)
are more evident when testing the whole system than when testing the single, isolated
components.



Fig. 2. Sketch of the testware used for testing DiaMH

Our proposal for facing the testing phase (1) is based on two concepts: virtual-
ization (in particular simulation and emulation) and usage of automated visual testing
tools. Simulation is used to model the devices. More precisely, the glucose sensor and
the insulin pump are simulated via software, respectively, for stimulating the DiaMH
system with selected inputs and for recovering the actual outputs of DiaMH to be com-
pared with expected outputs. The real behaviour of each smartphone is emulated; that
means that the real code of the smartphone will be executed on an emulator (e.g., An-
droid Emulator8) able to mimic the real behaviour of the smartphone’s app and visualize
the UI of the smartphone on the PC screen. On the same PC an automated testing tool
is installed. The testing tool will execute the test scripts that: – interact with the UI
of the emulated smartphones, and – set the behaviour of the virtualized sensors (e.g.,
the glucose sensor should return a certain sequence of values representing a “problem-
atic pattern”). Fig. 2 reports an overview of the elements involved in our approach: the
testware (i.e., the virtualized mocks for glucose sensor and insulin pump and the test
scripts), the emulated smartphones, and the healthcare cloud system.

3.1 Testware Implementation

Currently, our research group is working on the testware implementation, i.e., mocks
for glucose sensor and insulin pump and the test suite for a sample system analogous,
from a functional point of view, to the aforementioned DiaMH system.

For implementing the mocks we selected Node-RED9, a flow-based visual program-
ming language built on Node.js which has been expressly designed for wiring together
hardware devices, APIs and online services by means of JavaScript nodes that can be
easily created and combined with a rich browser-based flow editor. Moreover, Node-
RED is also used to wire the mock devices with the emulated smartphones and with

8 https://developer.android.com/studio/run/emulator.html
9 https://nodered.org/



the healthcare cloud system using the MQTT protocol. All these software components
(mock devices and emulated smartphones) will be uploaded on the IBM Bluemix10

cloud, where the healthcare cloud system is already deployed. The execution of the
emulated smartphones will allow to test the real implementation of the DiaMH mobile
apps (i.e., one for the patients and one for the doctors). Note that since the DiaMH mo-
bile apps implementation is done by relying on the Adobe PhoneGap cross-platform
framework11, iOS, Android and Windows Phone versions of the DiaMH mobile apps
will be generated.

The second ingredient of our approach is the test suite and the corresponding testing
tool. Several approaches can be employed to automate acceptance testing [9]. They can
be classified using two main criteria:

1. how test cases are developed. It is possible to use the capture/replay or the pro-
grammable approach;

2. how test scripts localize the UI elements to interact with. There are three main
approaches: visual (where image recognition techniques are used to locate UI ele-
ments), UI structure-based (a.k.a. DOM-based in the context of the web apps, where
UI elements are located using the information contained in the Document Object
Model and a locator is, for instance, an XPath expression [10]), and coordinates-
based (where screen coordinates of the UI elements are used to interact with the
app under test).

In our approach, we adopt the programmable approach for developing the test scripts
since it provides a major flexibility over capture/replay for test development [9]. Pro-
grammable acceptance testing is based on manual creation of a test script. Test scripts
can be written using ad-hoc languages and frameworks or general purpose program-
ming languages (such as Java) with the aid of specific libraries. Usually, these libraries
extend the programming language with user friendly APIs, providing commands to,
e.g., click a button, fill a field and submit a form.

In this work we adopt the visual approach for interacting with the UI since test
scripts have to interact with the UIs of mobile apps developed for different platforms
(i.e., those supported by Adobe PhoneGap). In this case, the visual approach allows to
create test scripts totally agnostic from the tested platform except, in some cases, for
the locators since some UI elements are rendered differently among platforms.

Concerning the testing tool, we use Sikuli12 that is based on the programmable and
visual approaches, and developed as an open-source research project of the MIT User
Interface Design Group. Sikuli is a visual technology able to automate and test graph-
ical user interfaces using screenshot images. It provides image-based UI automation
functionalities to Java programmers.

3.2 Test Cases, Test Scripts and Setup

In the context of this work, a test case is a list of actions performed on the DiaMH sys-
tem followed by one or more assertions. A Sikuli test script is the implementation of a
10 https://www.ibm.com/cloud-computing/bluemix/
11 http://phonegap.com/
12 http://www.sikuli.org/



test case based on the Sikuli framework, and consists of a list of commands/instructions
able to localize and interact with UI components, completed with JUnit assertions. Test
cases must reflect the requirements of the system. To simplify the description, in the fol-
lowing of the paper we focus on test scripts concerning only the Android-based version
of the patients mobile app. The app versions for the other platforms are functionally
equivalent (unless cosmetic changes of the UIs).

We expect that the DiaMH system works correctly13 when stimulated by the mock
glucose sensor providing values taken from log files containing real glucose patterns
recorded from diabetic patients (see Fig. 3). Having realistic input data is fundamental
in order to test the DiaMH system under realistic conditions.
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Fig. 3. Glucose patterns: Normal, More Insulin Required, and Problematic

The test suite will contain several test scripts for verifying the behaviour of the
DiaMH system when different patterns are detected. For instance, when the test script
that implements the test case TC1 (see below) will set the mock glucose sensor to
“problematic pattern modality”, we expect an alarm on the patient’s smartphone. We
speculate a pattern as problematic after 20 consecutive values over the threshold of 160
mg/dl of glucose in the blood (see Fig. 3).

Test case TC1
– set the mock glucose sensor to “problematic pattern modality” (i.e., 20 consecutive

values over the threshold of 160 mg/dl)
– set the mock glucose sensor sampling rate at 1 read/sec14

– after 60 seconds, assert alarm displayed on the patient’s smartphone15

13 i.e., that it behaves as specified by the requirements in response to the currently observed
glucose pattern. For instance, an alarm is displayed when a problematic pattern is detected
(see Test case TC1).

14 the log files plotted in Fig. 3 contain fictitious but realistic glucose level readings recorded
every 10 minutes, thus using the mock of the glucose sensor at 1 read/sec allows to speed up
the execution of the test of 600x.

15 since the mock of the glucose sensor provides a new value every second, and all of them are
above the 160 mg/dl threshold, after 20 seconds the system can, in theory, raise the alarm.



Fig. 4. Smartphone UI of the DiaMH app when a “problematic pattern” is detected

Fig. 4 shows what should be displayed on the smartphone screen in case a “problem-
atic pattern” is detected by the DiaMH system (i.e., the interface of the DiaMH patient
mobile app at the end of TC1, when the assertion is evaluated).

Fig. 5 reports a simplified implementation of a Sikuli test script implementing TC1.
The smartphone app interface is encapsulated by one (and in general more) Java classes
as prescribed by the Page Object pattern (see DiaMH app = new DiaMH()).

public void testProblematicPattern(){   
 commonFunction.startApp("DiaMH");   
 // wait => app loading 
 wait(3);   
 DiaMH app = new DiaMH();  
 // check if DiaMH app is started 
 assertTrue(app.isTitleDisplayed(new URL("Title.png")));  
 // set mock glucose sensor in “problematic pattern” modality 
 GlucoseSensor gs = new GlucoseSensor(); 
 gs.setPatternTo("Problematic");  
 // set sampling at 1 sec 
 gs.setSamplingRate(1);  
 // wait => pattern "Problematic" should be detected after <= 60s 
 wait(60);  
 assertTrue(app.isAlarmDisplayed(new URL("Alarm.png"))); 
} 
 
 
 Fig. 5. Test script for testing the display on the patient screen of an alarm raised in case of prob-

lematic pattern detection

The Page Object16 pattern is a quite popular test design pattern, which aims at im-
proving the test case maintainability and at reducing the duplication of code. A page
object is a class that represents the UI elements as a series of class attributes and that
encapsulates the features of the UI page into class methods. Adopting the Page Object
pattern in test scripts implementation allows testers to follow the Separation of Con-

However, some computations are required on the cloud system. For this reason, system re-
quirements state that the alarm must be shown on the smartphone within 40s the occurrence
of a problematic pattern, thus the test verifies the presence of the alarm after 20s+40s from the
first read.

16 http://martinfowler.com/bliki/PageObject.html



cerns design principle, since the test scenario is decoupled from the implementation.
Usage of Page Object pattern reduces the coupling between UI pages and test scripts,
promoting reusability, readability and maintainability of the test suites [8] (note that
Page Objects can be automatically generated [17] and transformed [11]). Similarly, the
behaviours of the glucose sensor and the insulin pump are encapsulated in classes that
contain methods implementing the commands required to execute specific actions on
the mocks. For instance, the method “setPatternTo” (see Fig. 5) provides the mock glu-
cose sensor with a glucose pattern recorded in an input file (i.e., a series of consecutive
glucose levels).

We can see in the example two visual interactions used for evaluating the two asser-
tions: in one case verifying that the app has been correctly loaded (hence showing the
DiaMH System string, see Fig. 5), while in the other verifying that the alarm message
is displayed as expected. It is worth noting that Sikuli can be also used for simulating
other kinds of interactions with the UI (e.g., clicking a button or typing in a field). Here,
we have shown only an example of visual assertions for the sake of simplicity.

Similarly, also the other patterns can be tested by means of specific test cases. For
instance, TC2 verifies the behaviour of the DiaMH system when the glucose levels are
fine, while TC3 when an additional injection of insulin is required.

Test case TC2

– set the mock glucose sensor to “normal pattern modality” (slight changing values
all near an optimal level of glucose and always below the threshold)

– set the mock glucose sensor sampling rate at 1 read/sec
– after 40, 60 and 120 seconds: assert NO alarm on the patient’s smartphone

Test case TC3

– set the mock glucose sensor to “more insulin pattern modality” (in the last 20 reads
there are at least 4 but not more than 15 values above the threshold of 160 mg/dl)

– set the mock glucose sensor sampling rate at 1 read/sec
– after 60 seconds: assert an increment of 2 units of insulin on the patient’s smart-

phone

3.3 Strengths and Weaknesses of the Approach

In our opinion the major strengths of the proposed approach are the following: (1) the
complexity of the entire IoT system is hidden, (2) test cases can be easily automated
by adopting visual testing tools, (3) under certain conditions, test cases on a virtualized
system can be executed in a fraction of the time required by the real settings.

On the other hand the weaknesses include: (1) tests are usually time consuming to
develop, (2) tests are prone to non-determinism problems (i.e. the test outcomes could
be influenced by factors that are outside the test control), (3) tests are prone to the
fragility problem (i.e., a test that is broken when the application under test is slightly
modified), (4) it is not easy to pinpoint the root cause of failure since anything in the
entire flow could have contributed to the error, (5) visual test cases can verify only the
functionalities of the system that provide a visible feedback on the GUI.



4 Related Work

To the best of our knowledge, this is the first paper concerning explicitly acceptance
testing of IoT systems.

Rosenkranz et al. in [15] consider testing of IoT systems, but the goal is presenting
a test system architecture for open-source IoT software instead of a general approach
for acceptance testing of IoT systems as we propose. Before presenting a possible test
architecture for open-source IoT systems, Rosenkranz et al. sketch some challenges
that are specific to IoT systems. For example, heterogeneity of hardware and interoper-
ability testing. With the Rosenkranz et al. proposal, we share two fundamental points:
the importance of virtualization in IoT systems testing and the conviction that testing
must be performed also on real devices to ensure that the combination of software and
hardware works as requested.

Siboni et al. [16] propose a security testbed framework for testing wearable de-
vices against external simulated attackers to cover different aspects of security design
requirements. The testbed can emulate different environments (including mobile), can
generate stimuli from simulated sensors, and can produce reports for data exploration
and analysis. The testbed is then evaluated by a proof-of-concept. The goal of that work
is different from ours: security testing for wearable devices instead of acceptance testing
of a whole IoT system.

As already said, the case study used in this work has been inspired by a Parasoft
white paper [14]. In that paper, the key ideas are: de-constructing the system into layers
for effective testing, isolating components to improve automation and using a service
testing solution for testing components. For testing the healthcare system, the service
testing solution stimulates the virtualized glucose sensor and propagates to the system
the obtained values. Then, the same service testing solution will be able to verify the
alert irruption (if any). Our approach differs from the Parasoft’s one in three respects.
First, we explicitly envisage acceptance testing, while using the Parasoft’s approach
is difficult for a user to evaluate and accept the IoT system under test (because the
interaction between the components is hidden in the service testing solution and not
visible on the smartphone as in our case). Second, the solution proposed by Parasoft is
more difficult to implement than ours without the commercial Parasoft tool. Third, our
proposal is more complete: it tests together the smartphone’s apps and the healthcare
system (in particular the interactions between them), while the Parasoft proposal cannot
test the software running on the smartphone (because that role is played by the Parasoft
tool).

5 Conclusions and Future Work

In this work, we have presented an approach for acceptance testing of IoT systems. To
explain the approach we used a realistic m-Health system composed by local sensors
and actuators, a remote cloud-based healthcare system using artificial intelligence and
two smartphones. However, the proposed approach is not limited to the m-health con-
text, but can be applied to all the IoT systems that rely on smartphones as principal way
of interaction between the user and the system.



As future work, we plan to complete the implementation of the testware sketched in
this paper, write some test scripts and fine-tune the approach. Ongoing work is currently
under-way to build up and integrate the Node-RED based mock sensors and the smart-
phone application. In the future, we also intend to experiment our testing approach with
other IoT systems to verify its real applicability and scalability and extend our proposal
to support also the acceptance test driven development of IoT systems [5]. A possi-
ble problem of the approach concerns the time for executing test scripts automatically;
indeed we believe that in worst cases test suite execution could take long time.

Acknowledgements: this research was partially supported by Actelion Pharmaceuti-
cals Italia and SEED 2016 grants.
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