
Copyright:

© ACM, 2017. This is the author's version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of 32nd ACM/SIGAPP

Symposium on Applied Computing (SAC 2017)

http://dx.doi.org/10.1145/3019612.3019621

Service-Oriented Domain and Business

Process Modelling

Gianna Reggio, Maurizio Leotta, Diego Clerissi, Filippo Ricca

Abstract:

We present Precise Service-Oriented Modelling (Precise SOM) – a novel lightweight method

for integrated domain and business process modelling, which follows the service-oriented

paradigm, and uses a UML profile as notation – and a detailed workflow to guide the

production of the models. In our method the produced UML models are precisely defined by

means of a metamodel, a set of constraints, and a limited set of UML constructs to help

modellers to avoid common mistakes and to guarantee, by construction, a good quality.

Precise SOM has been successfully used in an industry-academic project concerning the

modelling of a big harbour.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1145/3019612.3019621

Service-Oriented Domain and Business Process Modelling

Gianna Reggio, Maurizio Leotta, Diego Clerissi, Filippo Ricca
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS)

Università di Genova, Italy

{gianna.reggio, maurizio.leotta, diego.clerissi, filippo.ricca}@unige.it

ABSTRACT
We present Precise Service-Oriented Modelling (Precise SOM) –
a novel lightweight method for integrated domain and business
process modelling, which follows the service-oriented paradigm,
and uses a UML profile as notation – and a detailed workflow to
guide the production of the models. In our method the produced
UML models are precisely defined by means of a metamodel, a set
of constraints, and a limited set of UML constructs to help modellers
to avoid common mistakes and to guarantee, by construction, a good
quality. Precise SOM has been successfully used in an industry-
academic project concerning the modelling of a big harbour.

CCS Concepts: Applied computing→ Business process modeling
Keywords: Service-Oriented, Precise Model, Method, UML, Domain

1. INTRODUCTION
Domain and Business Process models represent real-world concepts
(entities involved in the business and business rules/processes) per-
tinent to the domain that needs to be modelled. They are often
used in the initial phases of traditional software development as
starting point for building software systems. Domain and business
process modelling are nowadays well-established, and are also basic
ingredients of enterprise/business modelling [9, 12]. Many different
methods and notations have been proposed to support these activ-
ities [9], such as object-oriented approaches based on UML [22]
class diagrams, and entity-relationships models for domain mod-
elling; as well as, several proposals based on BPMN [23, 5] or UML
activity diagrams [21, 15, 3, 19] for business process modelling.
Based on our experience in the context of domain and business
process modelling, including also the participation to several joint
industry-academic projects (e.g. a current one requiring to model a
big harbour), we selected a set of features that we consider extremely
relevant for a method having the goal of modelling both domains and
business processes, and that can be successfully applied in industrial
projects. Such a method should: (1) be integrated: both dynamic and
static aspects must be modelled and cross-checked/synchronized;
(2) lead to the creation of high-quality models by construction;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2017, April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019621

(3) be fairly simple to apply; (4) provide a support for simulation
and analysis; (5) avoid proprietary solutions; and (6) adopt a visual
notation. To the best of our knowledge, no method in the literature
seems to have all these features.
In our view, domains are composed of active and possibly au-
tonomous dynamic entities interacting among them, and business
processes are flows of events in which these dynamic entities take
part. The need to model complex domains and processes led us
to consider the service paradigm [7], since the concept of service
offers a suitable way to modularize how the various entities com-
posing a domain interact among them, and consequently to simplify
business processes modelling [2]. We discarded the object-oriented
paradigm, since it forces to express the interactions in terms of
method calls, and as result the models contain classes with long lists
of methods, that have to be structured using additional constructs,
such as interfaces; furthermore, object-oriented classes do not offer a
native way to model which methods can be called by their instances.
Moreover, the fact that services may be provided or used allows
to easily represent which are the possible interactions offered and
which are those required. Services are also, in our opinion, better
than plain messages exchange, again because they offer a natural
way to structure complex interactions among dynamic entities.
In this paper, we present the result of our investigations and ex-
periences, Precise SOM (Precise Service-Oriented Modelling), a
method for the conceptual modelling of domains and related busi-
ness processes using a specific UML profile. The main novelty of
Precise SOM is that it has been conceived to support all the features
mentioned before. Precise SOM is the result of previous works of
the authors in the field of modelling using the UML [10, 4]. We
developed and refined it working on a real industrial case study [1],
where the domain is a harbour consisting of ships, people working
on them, transporters of various kinds, officials, documents, and
containers.
We have opted for the UML because it is widely known and used
[20, 18], and provides many different diagrams suitable to cover
all aspects of a domain (in contrast, e.g. to BPMN), including its
business processes; furthermore, by means of the profile mechanism,
UML provides a way to define its own variants.
For us, precise means that the form of the acceptable UML models
is carefully defined by a metamodel, by a set of well-formedness
constraints, and by restricting UML to only essential language con-
structs. We have found that precisely defining the models helps to
avoid mistakes, and to improve their quality.
By following Precise SOM and the associated detailed workflow,
the modeller can easily model all the aspects of a domain and obtain
consistent and precise models of the associated business processes.

Precise SOM models are capable of representing both (1) the static/
structural aspects of a domain as well as (2) the dynamic/behavioural
ones in terms of services, and moreover they are also equipped with
features to cover business process modelling (again in terms of
services), having a good quality level by construction.
Precise SOM can be applied to any kind of domains and its models
are particularly suited to be the starting point of the development of
(software) systems following the service-oriented paradigm. Fur-
thermore, the resulting models, being expressed with the UML,
can be transformed into different notations by using model-driven
tools, for example: executable code, inputs for simulation tools, and
specification languages for formal analyses.
Precise SOM domain models can be employed in different activities
including: (1) representing the know-how on a domain for getting a
shared and mutually agreed starting point among the stakeholders
before starting the development of some supporting HW/SW sys-
tems (also not service-oriented); (2) analysing and re-engineering
the domain; (3) simulating/analysing the domain, either manually
or by means of software tools/formal approaches, with the aim of
getting a deeper understanding of the domain and improving it.
The paper is structured as follows: Sect. 2 introduces our service-
oriented view of the domains, and Sect. 3 presents the form of the
Precise SOM models and the workflow driving their productions.
Then, Sect. 4 describes the related work, while conclusions and
future work are drawn in Sect. 5.
Running Example: Dealer Network – Since the previously men-
tioned harbour case study is too complex to be presented in this
paper, Precise SOM will be illustrated using a simple but meaning-
ful case study, the Dealer Network, inspired by a similar example
used in the SoaML Specification [14]. The Dealer Network is a
business community including three primary parties: the dealers,
the manufacturers, and the shippers. They are independent parties
but they want to work together; manufacturers sell a product (e.g.
gasoline) to the dealers, while the shippers deliver the product from
the manufacturers to the dealers. The interactions among the parties
of this business community are described as follows. A dealer wants
to buy a quantity of product from a manufacturer. It may ask for
the current price of the product before sending an order. When the
manufacturer receives the order, it checks the product availability.
If the product is available, the manufacturer sends a confirmation
to the buyer, and asks a shipper to deliver the bought product to the
dealer. When the shipper receives a request from a manufacturer, it
informs the manufacturer of the date for picking up the shipment.
Once the shipment is delivered to the dealer, the shipper sends a
confirmation to the manufacturer. The dealers may check the status
of the placed orders, and the manufacturers may check the status of
the required shipments.

2. SERVICE-ORIENTED DOMAINS
A key ingredient of any modelling method is the definition of the
collection of items that are going to be modelled [16]. The modelled
items of Precise SOM are structured dynamic domains, composed
by entities interacting following the service-oriented paradigm, that
in the following of the paper we call service-oriented domains.
We follow the Oasis definition of service and participant [13],
backed also by the OMG in the SoaML specification [14]: “Service
is defined as the delivery of value to another party, enabled by one
or more capabilities. Here, the access to the service is provided
using a prescribed contract and is exercised consistent with con-
straints and policies as specified by the service contract. A service

is provided by a participant acting as the provider of the service for
use by others. The eventual users of the service may not be known to
the service provider and may demonstrate uses of the service beyond
the scope originally conceived by the provider. As mentioned earlier,
provider and user entities may be people, organizations, technology
components or systems - we call these Participants.”
Moreover, in our view, the participants may manipulate many differ-
ent passive entities (that we name objects), either by means of inter-
nal actions (i.e. carried out directly by the participant) or through the
services (i.e. carried out by other participants). We have preferred
the term objects to data, since they are not always pure values but
may have also a mutable state.
The value delivered by a service provided by a participant usually
may involve entities different from the participant itself; for example,
a participant providing many services for obtaining the public data
about the students of a university will have to interact with the
informative system of the university. We name the entities that a
participant may observe and act on as realms, and say that it reigns
on them. The realms are autonomous, and thus they may change
their status not only as a consequence of a participant act. Note that
the realms of a participant are not a subpart of the participant itself,
and various participants may reign on the same realm; for example,
a participant providing the services for enrolling to the courses and
for recording the students marks will also reign on the university
informative system.
The Dealer Network can be described as a service-oriented do-
main, whose participants are the dealers, the manufacturers, and
the shippers. They will manipulate many different passive entities
(i.e. objects), for example the orders, the quotes, and the shipping
requests. The Dealer Network participants will interact using four
services: ManageOrder, GetOrderStatus, RequestShipping and Get-
ShipmentStatus. In detail, the dealers use the services provided by
the manufacturers:
• ManageOrder to request a quotation and then place an order for

what they want to buy from the manufacturers. In the former case,
the service supplies the dealers with the quote of the product. In
the latter case, the dealers will receive further information about
the order, such as the order id and status.
• GetOrderStatus to get information about the status of the placed

order (identified by the order id).
While the manufacturers use the services provided by shippers:
• RequestShipping to have the product relative to an order delivered

to the dealer; the shipper informs the manufacturers of the picking
and delivery dates. Then, the manufacturers will receive the
delivery confirmations when the dealers receive the product.
• GetShipmentStatus to get information about the status of a ship-

ment for the product ordered by a dealer (identified by the waybill
number that they received together with the pickup info).

The realms of the manufacturers are their plants (where the indus-
trial/manufacturing activities take place), whereas the realms of the
shippers are their informative systems and their truck fleets. Notice
that a participant is not obliged to reign on some realms, as in the
case of the dealer, which also does not provide any service.
A participant P may be either monolithic, as in the case of a hu-
man being, or structured, whether it can be described as a set of
(sub-)participants interacting among them by means of provided
and used services. Thus, a service architecture presents how the
sub-participants of P provide and use their services to allow P to
provide its services, taking also advantage of the services used by
P itself. A structured participant will reign on the realms of its

Figure 1: Service-Oriented Domains: Conceptual Model

sub-participants. A domain is a “closed” structured participant, i.e.
it neither offers nor requires any service. Since the Dealer Network
is structured and does not provide and use services, it can be seen as
a domain.
As suggested by [16], the above informal introduction of the do-
mains considered by Precise SOM is summarized and systematically
presented by means of a conceptual model shown in Fig. 1 (for
simplicity, we omit the association end multiplicities equal to 1, thus
a service is linked exactly with one service contract and vice versa).
A participant is characterized by:
• a name;
• the objects that it (and its sub-participants, if any) may manipulate;
• the realms on which it reigns;
• the services that it provides (also none) or uses (also none);
• if monolithic, a behaviour, that will be based on sending and

receiving the messages of the used and provided services, together
with internal actions that may concern its realms or objects;
• if structured, a set of sub-participants, and a service architecture.

Note that the behaviour of a structured participant is completely
determined by its sub-participants and by its service architecture.

A service is characterized by an interface, contract, and a semantics.
The service interface contains the static information needed to access
the service. A service interface is conceptually seen as a set of “in”
and “out” messages, where each message is characterized by a name
and a list of typed parameters; the “in-messages” are used to require
the service capabilities to a service provider, and the “out-messages”,
if any, are used to answer such requests.
The service contract focuses on the protocol between the provider
and the user of the service. The service contract specifies which are
the allowed sequences of interactions between who uses the service
and who provides it.
The service semantics describes the service essence. We assume that
a service is able to act on some realms (also none) i.e. it may modify
such realms as the result to having received an in-message from a
service user, and its answers who uses the service (out-messages)
may depend on the current status of such realms. Thus, the semantics
of a service will be described by stating how the reactions to the
in-messages depend on the previous received messages and on the
realms statuses, and such reactions consist in acting on the realms
and in sending out-messages.

3. Precise SOM MODELS
Precise SOM uses a UML profile as modelling notation. Thus, its
models are UML models having the specific form presented in Fig. 2
by means of a metamodel, and a set of well-formedness constraints
(for lack of room only a few are reported in Fig. 5, the others can be
found in the technical report available in [1]).

Figure 2: Precise SOM Metamodel

The structure of the Precise SOM models strictly mimics the struc-
ture of the domains presented in the previous section and summa-
rized in Fig. 1. Indeed, Precise SOM provides two different kinds
of models for structured and monolithic participants; both offer the
possibility to model the services used and provided by a participant;
moreover, the models of the structured participants include those of
the sub-participants, and how they are organized into a service archi-
tecture, whereas the models of the monolithic participants contain
their behaviours.
Notice that here we are actually speaking of participant types instead
of specific participants, since very frequently many participants have
a common structure and behaviour (i.e. they have the same type).
So, when we say “participant P”, we actually mean its type.
A Precise SOM model of a participant P is decomposed in several
views listed below:
•object view: the definitions of the objects used by P;
• realm view: the collection of the models of the realms (Realm

Model in Fig. 2) on which P reigns;
• service view: the collection of the models of the services (Service

Model in Fig. 2) provided and used by P;
• static view: the class defining the P type and any class and datatype

needed to define it, to show which services are provided and used
by P, on which realms P reigns, and, in case P is monolithic, its
internal actions and attributes.

If P is structured, a service architecture showing the sub-participants
of P and their respective connections will be depicted together with
the static view. If P is monolithic, then the model includes the
behaviour view defining the behaviour of the P instances by means
of activity or state machine diagrams.

3.1 Object View
The object view describes the types of the objects manipulated by
a participant. Technically, the object view is a UML class diagram
containing classes stereotyped by �object�, plus any other class
and datatype needed to define them. The operations of such classes/
datatypes may be defined either by methods or pre-post conditions.
In Dealer Network there are seven types of objects, modelled by
the corresponding classes stereotyped by �object�, as shown in

Figure 3: Dealer Network Model: Object View

Figure 4: Plant: Realm Model

Fig. 3. Date and Status are datatypes used to define some of the
object classes.

3.2 Realm View
The realm view is the collection of the models of the realms under
the control of a participant. Each realm is modelled by a class
diagram including a class named as the realm itself and stereotyped
by �realm�, and all other classes and datatypes needed to define
it. The realm is usually a dynamic entity exhibiting an autonomous
behaviour, that will be modelled by means of a state machine having
as context the realm class. A realm model is an abstract view of
that entity taking into account only the features related with the
participants acting on it. The visible operations of a realm class
represent the possible activities of the realm itself, and will be used
to define the events of the associated state machine.
The Dealer Network reigns on three (types of) realms: the manu-
facturers’ plants, the shippers’ information systems and truck fleets.
Fig. 4 presents the model of the Plant realm, which is character-
ized by the quantity of product in stock (modelled by the attribute
stock), and by the order archive (modelled by the association orders
with the class orderArchive). The operations of orderArchive are
defined by pre-post conditions (see the note). The state machine
models the autonomous behaviour of the plant: the stock may be
freely increased/decreased (it will be never negative nor bigger than
1000000), and the orders may be added and later delivered.

3.3 Service View
The service view contains the models of all the services provided
and used by a participant. A service model, see Fig. 2, consists
of a name, an interface, a contract, and a semantics. We use the
service ManageOrder provided by the manufacturers as an example.
A service interface is defined by a UML class stereotyped �service�
and named as the service itself. It should realize and use two UML
interfaces, defining the in/out-messages by means of operations,
named respectively S_IN and S_OUT, if the service is named S. Re-
alization is represented by a dashed arrow with closed head stereo-
typed by �in�, whereas usage is represented by a dashed arrow
with open head stereotyped by �out�. The operations of the ser-
vice interfaces are used to model the in/out-messages. Messages
may have parameters typed either by primitive types or by “ob-
jects” (introduced in the Object View). For instance, the message
requestQuote contains an object of type Order. Thus, a service
interface consists of a class diagram containing a class stereotyped
by �service� and the two interfaces connected to it by the proper
UML relationships (realization and use). The S_OUT may have no
operation whenever the service provider never communicates with
the service user; in this case it may be omitted.

Object View
•each classifier in the object view is either a class or a datatype
Realm View
• the realm view of a structured participant is the collection of the realm views of

its sub-participants
•each realm model must contain a class stereotyped by �realm�
Service View let SM be the model of a service S consisting of a service interface
SI, a service contract SC and a service semantics SS:
• SM belongs to the service view of P iff it or its conjugate types a port of P
• the realms appearing in SS are included in those of P providing S
• the sequence diagrams in SS are corresponding bijectively with those of SC,

and the corresponding sequence diagrams must have exactly the same messages
in the same order, and all their guards are a conjunction of those of SC with
possible further formulas based on the involved realms statuses

Let SD be a sequence diagram in SC/SS:
•SD must have exactly two lifelines typed by S_IN and S_OUT respectively
•all SD messages are calls of the operations of either S_IN or S_OUT
• the first message of SD is a call of an operation from S_IN (i.e. an in message)
Static View let SV be the static view of a participant P:
•SV includes exactly one class named as P, and stereotyped by �participant�,

whereas all other elements are either non stereotyped classes and datatypes used
to define it or classes stereotyped by �realm�

•each realm in SV must appear in the realm view of P, and must be connected by
exactly one association with P, and the corresponding association end must be
named

•any port of P must be either stereotyped by �service� and typed by a service
interface, or by �use� and typed by the conjugate of a service interface

Behaviour View let BV be a behaviour view of a participant P (state machine):
• the events in BV correspond to in-messages (out-messages) of the interfaces of

the services provided (used) by P
• the effects in BV are built out of internal actions of P, operation calls on the

realms associated with P, and sending of messages
Service Architecture let SA be the service architecture of a structured participant
SP:
•each part of SA must be typed by a sub-participant type of SP
•each port of SP stereotyped by �service� (�use�) must be connected with

a port of a part of SA typed by the same service interface and stereotyped by
�service� (�use�)

•each port stereotyped by �use� of a part of SA must be connected at least with
either one port of another part typed by the conjugate of its service interface and
stereotyped by �service� or with a port of SP stereotyped by �use� and
typed by the same service interface

•each port stereotyped by �service� of a part of SP can be connected only
with some port of another part typed by the conjugate of its service interface and
stereotyped by �use� or with a port of SP stereotyped by �service� and
typed by the same service interface (notice that thus it may also be unconnected,
since not all the services offered by sub-participants must be used)

•each sub-participant class must type at least one part of SA

Figure 5: Precise SOM Model: Well-Formedness Constraints

Fig. 6 presents the interface of the service ManageOrder. The two
operations of ManageOrder_IN represent the in-messages for re-
questing a quotation and for placing an order; whereas the two
operations of the interface ManageOrder_OUT correspond to the
out-messages and return a quotation and an order info, respectively.
A service contract consists of a set of UML sequence diagrams defin-
ing all the possible ways of using the service, showing which mes-
sages the provider and the user exchange and in which order. Those
sequence diagrams have exactly two lifelines (service provider role
and service user role) typed by the provided and used interfaces
respectively (S_IN and S_OUT, if the service is named S); moreover,
all their messages are calls of those interfaces operations, and the
first message must be an in-message, i.e. a call of an operation of
the provided interface.
Fig. 7 presents the contract of the service ManageOrder. We can see
that the service may accept a request for a quotation for an order O,
to which it answers providing a quotation containing, among other
info, the proposed price (Q.price). Moreover, it may accept an order
O, to which it answers with an order info OI, containing the order
status (confirmed or cancelled). The guards are used to explicit the
constraints of the contract between input and output; for instance,

Figure 6: ManageOrder: Service Interface

Figure 7: ManageOrder: Service Contract

Figure 8: ManageOrder: Service Semantics

the quote Q must be computed according to the same quantity and
date of the order O for which a quotation was requested.
The value provided by a service may concern some realms, thus
the service semantics should be defined by modelling how the in-
messages will result in modifications of that realm’s status, and
how that realm’s status will influence the out-messages. Then,
the sequence diagrams of the contract should be refined by adding
execution specifications to represent the modifications of the realms
statuses, and further guards on the statuses of the realms to influence
the decision of which messages to send out and which parameters
they are carrying.
The realm of the service ManageOrder is denoted by PL:Plant (see
Fig. 4), and its semantics, reported in Fig. 8, states that an order is
accepted only in the case the required quantity of product is less
or equal to that in stock. An execution specification shows how
the stock and the order archive are modified whenever an order is
received (e.g. if it is accepted, then the ordered quantity of product
is eliminated from the stock).

3.4 Static View
The static view of a participant type P is used to show which ser-
vices are provided and used by P, and on which realms P reigns.
It is a class diagram containing only one class stereotyped by
�participant�, named as the type itself, and any number of classes
stereotyped by �realm�, linked by associations to the former.
A class stereotyped �participant� introduces a participant type,
that will be used to type the specific participants (instances) of that
kind, and that we name participant class.
The UML mechanism of the ports is used to indicate the points of
interaction through which participants interact with each others to
enact services, and the needed ports are added to the participant
class. There are two kinds of port that a participant class may have,
one is stereotyped by �service� where a service is provided, and
the other by �use� where a participant uses a service provided by
another participant. A port is then typed by a service interface. A
service port has the type of the provided service interface, and a use

Figure 9: Manufacturer: Static View

port has the type of the conjugate of the interface of the required
service. A conjugate service interface is suggested as a mechanism
to connect the using participant and the providing participant. Each
service interface has one conjugate service interface that is named by
the name of the corresponding service interface prefixed with “∼”,
and it is defined transforming the in-messages into out-messages,
and similarly the out-messages into in-messages, i.e. the realized
interface becomes the used one and vice versa. The static view of a
monolithic participant, the Manufacturer, can be seen in Fig. 9.

3.5 Behaviour View
The behaviour of the monolithic participants can be modelled using
an activity diagram (e.g. in the case of an orchestrator of services)
or a state machine (e.g. for a human being).
Fig. 10 presents a simplified, for space reason, behaviour of the
manufacturers (a monolithic sub-participant of Dealer Network) by
means of a state machine describing the handling of only one order
per time. Such machine has 4 states and its events are determined by
(a) the S_IN messages of the provided services (see, e.g. Fig. 6 for
what concerns ManageOrder service), (b) and the S_OUT messages
of the used services. The guards may involve the associated realms
(in fact, PL is the association connecting the Manufacturer to the
Plant) and the attributes depicted in its Static View. About the
effects, they are built combining: (1) calls of private operations of
the Manufacturer class (see the static view in Fig. 9), (2) sending of
out messages of provided services to answer a request from a service
user (for example, @.quote(Q) is the message containing a quote
Q sent to the service caller @, e.g. a dealer, in compliance with
ManageOrder contract), (3) sending of in messages of the required
services (e.g. cS.requestShipping(RQ) is the message containing the
shipping request RQ sent to the currently selected Shipper cS).

3.6 Service Architecture
The service architecture of a structured participant is modelled by
a composite structure diagram containing the participant class con-

Figure 10: Manufacturer: Behaviour View

sidered as a structured class, having a part for each sub-participant
role (typed obviously by its class). A multiplicity is associated
with a part with the obvious meaning of constraining the number of
sub-participants simultaneously playing that role.
Fig. 11 presents the service architecture of the Dealer Network
(together with its static view); a participant role is displayed as
a solid rectangle (the icon for the UML parts) that contains the
optional role name, the mandatory participant class typing the role,
and the multiplicity (omitted if equal to 1), e.g. : Dealer[*].
The fact that a sub-participant (role) uses a service provided by
another sub-participant (role) is modelled by means of a connec-
tor linking the port where the service is provided (stereotyped by
�service� and typed by the service interface) with the port where
the service is used (stereotyped by �use� and typed by the conju-
gate of the service interface). Any port stereotyped by �use� must
be connected either with a matching port of another sub-participant
or with a port of the structured participant, whereas a port of a
participant stereotyped by �service� may be connected with any
number of matching port of sub-participants or with a port of the
structured participant. If a structured participant provides a service,
the port where it is provided should be connected with a port typed
and stereotyped in the same way of a sub-participant (the one which
will be able to provide such service); differently, if it uses a ser-
vice, the port where it is used may be connected with any number
(also none) of ports typed and stereotyped in the same way of some
sub-participant (the one which will be able to use such service).
In Fig. 11, we can see how any service provided by a sub-participant
of Dealer Network is used by another one (e.g. ManageOrder pro-
vided by the manufacturers and used by the dealers).

3.7 Business Processes in a (Service-Oriented)
Domain

In the context of the service-oriented domains, the entities taking
part in a business process are a subset of the participants of the
service-oriented domain. To model a business process we consider
roles for the process participants, not specific instances, thus we
speak of process roles, that will be typed by participant classes.
A business process in a service-oriented domain is essentially a
workflow of service message calls (between pairs of process roles),
and of internal actions of the participant roles (named tasks) aimed to
obtain the process goal; moreover, since the participants manipulate
objects and data, the model includes also roles typed by object
classes. The workflow is modelled by an activity diagram, whereas
the tasks are modelled by means of UML actions.
UML activity diagrams offer a large number of constructs (49 in
the last version [22]). However many of them are relative to very
specific cases or may be derived by other ones and moreover, a large

Figure 11: Dealer Network: Service Architecture & Static View

number of them are scarcely known and used [20] and many of
them have an unclear static and dynamic semantics. For this reason,
to avoid that the modeller wastes time in studying and deciding
which ones to use, to prevent common mistakes, and to improve
the readability of the produced diagrams, Precise SOM strongly
suggests to use only the following subset of the 49 constructs, that in
our experience are sufficient to model the business processes: action
nodes, control nodes (i.e. initial, decision/merge, fork/join, flow and
activity final), time events, control flows, the rake construct (that
allows to reuse an activity defined elsewhere by means of another
activity diagram), and swimlanes.
The activity diagram modelling the business process should include
a vertical swimlane to represent each participant process role (more
detailed processes may use swimlanes to represent also the involved
realms). The label of such lane must have the form RName: Par-
ticipantClass. The actions will be placed in the swimlane of the
participant performing them. The sending of a service message rep-
resented by the operation op by a process role R1 to a process role
R2 is represented by a signal sending action having form R2.op(...)
that must be placed in the swimlane of the sending role R1.
Furthermore, business processes require often non-deterministic
choices among several alternatives and, since the UML activity
diagram does not offer a specific construct to represent it, but it may
be obtained by a choice where all the guards of the alternatives are
true, we introduced the black diamond to represent such construct.
See Fig. 13 to view a partial list of well-formedness constraints
regarding business processes in Precise SOM.
Fig. 12 shows the Buying business process of Dealer Network. The
layout depicted in the figure is not the optimal one we suggest [17];
however, it has been adopted, due to space limits, to include all the
relevant information.
It may be surprising, but the list of the suggested activity diagram
constructs does not include the object nodes; they are not needed
since we explicitly represent the things used in the processes by
means of objects/data roles (see, e.g. the flowing of O in the top-left
part of the diagram in Fig. 12). Moreover, because our activity
diagrams want to precisely model the flowing of the activities in
a business process, if we decide to use the object nodes to model
the passing of something between two activities, they should be
used for any possible passage, hence making the activity diagrams
immediately unreadable

3.8 Workflow of Precise SOM
Now we introduce the workflow that a modeller should follow in
order to properly apply our method. We identified two main ap-
proaches for building a model in the context of service-oriented
domains. The business first approach is characterized by a top
down process: starting from interviews with stakeholders, informal
messages exchanged between domain participants are identified and
some business processes are drafted. More details about those partic-

Let a business process model consisting of the roles R1:PC1, . . . , Rm:PCm, and
of the activity diagram AD:
• m ≥ 1
• for i = 1, . . . ,m PCi is a participant class
• AD is built using only action nodes, control nodes (i.e. initial, decision/merge,

fork/join, flow and activity final), control flows, time events, the rake construct,
and swimlanes. Moreover:

• a guard on a flow leaving a decision node is labelled by [else] or a well-formed
OCL expression of type bool without side effects, where only the process roles
appear freely

• any activity recalled by means of the rake construct must be defined in another
diagram part of the business model

Figure 13: Business Process: Well-Formedness Constraints

Figure 12: Dealer Network: Business Process Buying

ipants, services, realms and objects are later gathered and introduced
to support the previously modelled elements, eventually refining
the business processes themselves. The service first approach is a
bottom up process, where the domain modelling is the first step.
Here, services are identified at the beginning, aiming at having more
detailed information while modelling the business processes at the
end, which makes them consistent and precise.
In Fig. 14 the service first approach is detailed. We adopted it
for modelling the running example, since initially more know-how
about participants and services was available than that about the

Figure 14: The Service First Approach

process. As shown, each constitutive element of Precise SOM meta-
model (see Fig. 2) is modelled, having a draft list of the services of
the domain as input. Notice that, whenever a structured participant
is found, each sub-participant will be modelled by recursively apply-
ing the Model Participant Type activity. At the end of the activity, if
any, business processes are easily obtained. Even though we chose
not to show it in Fig. 14 for simplicity, it is important to consider
that the modeller may move back to a step of the process in case a
refinement is needed (e.g. a new realm is identified while working
on the service architecture).

3.9 The Harbour Project
The method has been prompted and evaluated in a joint industry-
academic projects where the domain to model was a harbour consist-
ing of ships, people working on them, carriers, officials, documents,
containers and so on. The processes were modelled around the
interactions among those participants. We applied the “service first”
approach to obtain precise business processes. The complete model
of the harbour (see [1]) included more than 10 participant classes
and more than 20 object classes, 3 realms and half a hundred of
messages exchanged from about 20 services. The main business
process included more than 40 nodes, considering both internal ac-
tions and messages. Feedback from professionals was positive and
promising. The involved stakeholders were satisfied with the quality
of the obtained artefacts and, more generally, with the usefulness of
our method.

4. RELATED WORK
In the context of the SENSORIA project1, a number of model-driven
approaches have been proposed for developing service-oriented
systems. For example, MDD4SOA (Model-Driven Development for
Service-Oriented Architectures) [11] adopts UML4SOA profile2, an
extension of UML which overcomes UML limitations in modelling
service-specific elements and services orchestration. As last step,
the produced UML4SOA artefacts are transformed into code. The

1http://www.sensoria-ist.eu
2http://www.pst.ifi.lmu.de/projekte/Sensoria/del_54/D1.4.b.pdf

main difference with our proposal is that MDD4SOA proposes
an approach for modelling and implementing executable service-
oriented systems, while we provide a precise method for modelling
domains and business processes, including both (software) systems
and humans.
Service-Oriented Architecture Framework (SOAF) [8] has been
proposed to improve the quality and effectiveness of the produced
service-oriented systems by means of a quite structured process,
consisting of input data (e.g. business use cases), activities to per-
form (e.g. business process modelling) and produced artefacts (e.g.
business architecture). Even though, similarly to Precise SOM,
SOAF is structured and precise, it differs on the following points:
no well-formedness constraints are provided, UML is not adopted,
and the goal of the framework is not on domain modelling.
Delgado et al. propose a conceptual methodology to derive soft-
ware services from BPMN business processes [6]. It is composed
of two main steps: 1) services identification and, 2) orchestra-
tion/choreography modelling starting from business processes. In an-
other work, the same authors present the MINERVA framework [5],
which adopts the previous methodology and combines Model Driven
Development with Service-Oriented Computing paradigms to derive
executable services from business processes. These works adopts
the SoaML profile, but neither the methodology nor the framework
introduce ways to represent the behaviour of a human/software
participant in the process as Precise SOM does.
IBM Service-oriented modelling and architecture (SOMA) [2] is
largely used in the industry, in particular for developing end-to-end
SOA solutions and for modelling software systems based on services.
SOMA is a flexible software engineering method composed of
several iterative phases, each one following a structured flow of
tasks. Flexibility is provided by choosing solutions templates, i.e.
customized decisions to specific problems that depend on the client’s
needs while building a SOA solution. Similarly to UML4SOA and
SOAF, SOMA is not oriented to conceptual modelling and its phases
are not UML-based. The absence of well-formedness constraints is
another difference with Precise SOM.

5. CONCLUSION AND FUTURE WORK
In this work we proposed a novel method for the conceptual mod-
elling of domains integrated with business processes, using a spe-
cific UML profile and adopting the service paradigm. The novelty
is given by the characteristics of our method that, to the best of
our knowledge, differentiate Precise SOM from any other service-
oriented domain modelling method found in the literature. First,
Precise SOM integrates both dynamic and static aspects of domain
entities, making the modelling of the behaviours of (human) partici-
pants flexible. Second, Precise SOM models are precisely defined by
means of a metamodel, a set of constraints and restricting UML to
only essential language constructs, with the final goal of helping the
modellers to avoid common mistakes, and to reduce the time needed
to build a model. The workflow we provided is simple and may help
the modeller to apply the method with little effort. Since we chose
the well-known UML visual notation, the resulting artefacts may be
also used for future activities, such as code transformations, simula-
tions and formal analyses. Finally, the method avoids proprietary
solution, thus it can be freely and completely applied.
As future work, we intend to: 1) experiment the method with further
industrial case studies, 2) improve/refine our workflow, 3) empir-
ically compare Precise SOM with other modelling methods, and
finally 4) develop a set of tools using open source Model-Driven

Engineering technologies for automatically verifying the constraints
on the various parts of the models and supporting the automatic
generation of source code for the software system participants.

6. REFERENCES
[1] Precise SOM Website. http://sepl.dibris.unige.it/PreciseSOM.php.
[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, and

K. Holley. SOMA: A method for developing service-oriented solutions.
IBM Syst. J., 47(3):377–396, 2008.

[3] E. Astesiano, G. Reggio, and F. Ricca. Modeling business within a
UML-based rigorous software development approach. In Concurrency,
Graphs and Models, volume 5065 of LNCS, pages 261–277. Springer,
2008.

[4] C. Choppy, G. Reggio, and K. Tran. Formal or not, but precise
modelling of services with CASL4SOA and SoaML. In Proc. of KSE
2012, pages 187–194. IEEE, 2012.

[5] A. Delgado, F. Ruiz, I. de Guzmán, and M. Piattini. MINERVA: model
driven and service oriented framework for the continuous business
process improvement and related tools. In Service-Oriented
Computing, volume 6275 of LNCS, pages 456–466, 2009.

[6] A. Delgado, F. Ruiz, I. de Guzmán, and M. Piattini. Towards a service
oriented and model-driven framework with business processes as
first-class citizens. In Business Process, Services Computing and
Intelligent Service Management, volume 147 of LNI, pages 19–31. GI,
2009.

[7] T. Erl. Service-oriented architecture: concepts, technology, and design.
Prentice Hall, 2005.

[8] A. Erradi, S. Anand, and N. Kulkarni. SOAF: An architectural
framework for service definition and realization. In Proc. of SCC 2006,
pages 151–158. IEEE, 2006.

[9] G. M. Giaglis. A taxonomy of business process modeling and
information systems modeling techniques. Int. J. of Flexible
Manufacturing Systems, 13(2):209–228, 2001.

[10] M. Leotta, G. Reggio, F. Ricca, and E. Astesiano. Towards a
lightweight model driven method for developing SOA systems using
existing assets. In Proc. of WSE 2012, pages 51–60. IEEE, 2012.

[11] P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-driven
service orchestration. In Proc. of EDOC 2008, pages 203–212. IEEE,
2008.

[12] J. Meekel, T. B. Horton, R. B. France, C. Mellone, and S. Dalvi. From
domain models to architecture frameworks. In Proc. of SSR 1997,
pages 75–80. ACM, 1997.

[13] Oasis. Reference Model for Service Oriented Architecture 1.0, 2006.
[14] OMG. SoaML Specification, Version 1.0.1, 2012.
[15] M. Razavian and R. Khosravi. Modeling variability in business process

models using UML. In Proc. of ITNG 2008, pages 82–87. IEEE, 2008.
[16] G. Reggio, E. Astesiano, and C. Choppy. A framework for defining and

comparing modelling methods. In Software, Services, and Systems,
volume 8950 of LNCS, pages 377–408. Springer, 2015.

[17] G. Reggio, M. Leotta, and F. Ricca. “Precise is better than light” a
document analysis study about quality of business process models. In
Proc. of EmpiRE 2011, pages 61–68. IEEE, 2011.

[18] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses what of the UML:
A personal opinion survey. In Proc. of MODELS 2014, volume 8767 of
LNCS, pages 149–165. Springer, 2014.

[19] G. Reggio, M. Leotta, F. Ricca, and E. Astesiano. Business Process
Modelling: Five Styles and a Method to Choose the Most Suitable One.
In Proc. of EESSMod 2012, pages 8:1–8:6. ACM, 2012.

[20] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi. What are the used
UML diagram constructs? A document and tool analysis study
covering Activity and Use Case diagrams. In Model-Driven
Engineering and Software Development, volume 506 of CCIS, pages
66–83. Springer, 2015.

[21] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
P. Wohed. On the suitability of UML 2.0 activity diagrams for business
process modelling. In Proc. of APCCM 2006, pages 95–104. ACS,
2006.

[22] UML Revision Task Force. OMG UML, V2.5, 2015.
[23] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and

N. Russell. On the suitability of BPMN for business process modelling.
In Business Process Management, volume 4102 of LNCS, pages
161–176. Springer, 2006.

