
Model-Driven Development of Software Front Ends

 Marco Brambilla
Politecnico di Milano and WebRatio

 @marcobrambi

marco.brambilla@polimi.it

Interaction
Flow
Modeling
Language

The modeling approach

What is a model?

Models

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection of
the original‘s properties

Pragmatic Feature A model needs to be usable in place of an
original with respect to some purpose

Model

represents System

Purposes:

• descriptive purposes

• prescriptive purposes

MDSE considers models as first-class citizens in software
engineering

The way in which models are defined and managed is based on
the actual needs that they will address.

MDSE defines sound engineering approaches to the definition
of

models

transformations

development process.

MDSE aim at large

Concepts

Abstraction from specific technologies

model once, build everywhere

Automated code generation from abstract models

Increased productivity and efficiency (models stay up-to-date)

Separate development of application and infrastructure

Separation of application-code and infrastructure-code (e.g. Application
Framework) increases reuse

Domain-Specific Languages (DSLs):

languages that are designed specifically for a certain domain or context

DSLs have been largely used in computer science. Examples: HTML, Logo,
VHDL, Mathematica, SQL

General Purpose Modeling Languages (GPMLs, GMLs, or GPLs):

languages that can be applied to any sector or domain for (software)
modeling purposes

The typical examples are: UML, Petri-nets, or state machines

Modeling Languages

Purpose: Transforming items

defining a mapping between elements of a model to elements to another
one (model mapping or model weaving)

Code is just another model

Transformations themselves can be seen as models

Model Transformations

Static models:

Focus on the static aspects of the system in terms of managed data and of
structural shape and architecture of the system.

Dynamic models:

Emphasize the dynamic behavior of the system by showing the execution

Types of models

CIM, PIM, PSM

Modeling Levels

Computation independent (CIM): describe requirements and
needs at a very abstract level, without any reference to
implementation aspects

Platform independent (PIM): define the behavior of the systems in
terms of stored data and performed algorithms, without any
technical or technological details

Platform-specific (PSM): define all the technological aspects in
detail

Modeling levels - CIM

Eg., business process

Modeling levels - PIM

Eg., business object description and constraints

Modeling levels - PSM

How the functionality in the PIM is realized on a certain platform

Using a UML-Profile for the selected platform, e.g., EJB

The UI Modeling Problem

14

User interface and interaction development
is a painful phase of software process

… for everybody!

UI Modeling Problem

Costly and

Inefficient process
Complexity of

user interfaces (UIs)

Ineffective

tools

Manual

development

No MDE

technology

The UI Design Problem

No model

driven

engineering

Platform independent

description of UIs

Focused on user

interactions

No definition of

graphics and styles

Reference external

models

The UI Design solution: IFML

17

User interaction has been overlooked in software engineering standards

Hence the Interaction Flow Modeling Language (IFML)

In less than 2 years (a record in OMG!), we obtained approval of the IFML
standard

Standardization gap

The Interaction Flow
Modeling Language

IFML Objectives

Binding to Persistence Layer

Navigation Path

Binding to
Business Logic

Content

Event

IFML Objectives: Content

Content

IFML Objectives: Navigation Path

IFML Objectives: Navigation Path

IFML Objectives: Events

Mouse Over

IFML Objectives: Events

IFML Objectives: Binding to business logic

IFML Objectives: Binding to business logic

IFML Objectives: Binding to persistence

Content

Book

Title: string

Cover: file

List Price: currency

Price: currency

Save: currency

Rating: integer

………

IFML Overview

IFML Essentials

Multiple views for the same application

Mobile and multi-device applications

Visualization and input of data, and production of events

Components independent of concrete widgets and presentation

Interaction flow, initiated by the user or by external events

User context: the user status in the current instant of the interaction (position,
history, machine, platform,…)

Modularization of the model (design-time containers for reuse purpose)

User input validation, according to OCL or other existing constraint languages

Covered aspects

IFML by example

Basic navigation flow between ViewComponents

IFML ViewComponents

ProductList ProductDetails
ProductEntry

Form

IFML Multiple containers and navigation

ProductList

ProductList Product

ProductDetails Select product

IFML Single container and navigation

ProductList

ProductList

ProductDetails Select product

IFML by example

IFML by example

Nesting of ViewContainers

Tagged ViewContainers (XOR, L, D, Modal, Modeless)

IFML ViewContainers

Message toolbar

[D] MailBox

[XOR] MessageManagement

[XOR] MessageViewer

[D] Message List MessageDetails

[L] Settings

[L] MessageWriter

[XOR] MessageSearch

[D] Search FullSearch

[D] [L] Messages

[XOR] MAIL Top

[L] Contacts

IFML by example

Actions

ViewComponentParts:

• Data binding

• Parameters

Types of ViewComponents (<<List>>)

IFML – adding details to ViewComponents

«Details»Name

«DataBinding» Binding

«ConditionalExpression»
expression

«List» Name

«DataBinding» Binding

«ConditionalExpression»
expression

«Form» Message Writer

«SimpleField» Field1: type1

«SimpleField» Field2: type2

«SelectionField» Selection1

Joint use of IFML and other modeling languages:

• DataBinding to classes and attributes of UML Class Diagrams

• Upcoming: also with other content models, such as: Entity-
Relationship, Ontologies, …

Data binding

Joint use of IFML and other modeling languages

Connection of Actions to back-end business logic as

• UML methods of classes

• whole UML dynamic diagrams
– activity diagram, sequence diagram, state chart diagram, …

Dynamic Behaviour

Dynamic Form Behavior

[L] User Data Input

«SimpleField» Name

«Form» UserInput

«SelectionField» Country

«DataBinding» Country

«ParamBindingGroup»
SelectedCountry UserCountry

«VisualizationAttributes» name

«SelectionField» State/Province

«DataBinding» State

«VisualizationAttributes» name

«ConditionalExpression»

UserCountry.States->exists(self)

Example: Wizard

[D] Step1

[XOR] InstallationWizard

«Form» Terms&Conditions

«SimpleField» Accept: Boolean

 Step2

«Form» Location

«SimpleField» Location:
directory

Step3

«Form» Options

«SimpleField» Options: Bool

Next Next

Previous Previous

«Parameter» Location:
directory

«Parameter» Location:
directory

«Parameter» Options: Bool

End

«Parameter» Accept: Boolean

«Parameter» Accept: Boolean

«Parameter» Options: Bool

Cancel Cancel Cancel

«ParamBindingGroup»
Location Location
Options Options
Accept Accept

Example: Faceted Search

Faceted search

«Form» Search

«SimpleField» keyword: string

«List» Results

«DataBinding» Result

Search «ConditionalExpression»

Years->includes (self.year)
AND
Venues-
>includes(self.venue)

«List» Years

«List» Venues

«ParamBindingGroup»
SelectedYears Years

«ParamBindingGroup»
SelectedVenues
Venues

«DataBinding»

YearFacet

«DataBinding»

VenueFacet

«ActivationExpression»
VenueFacet->notEmpty()

«ActivationExpression»
YearFacet->notEmpty()

Example: Details on Actions

ProductCreation

NewProductDisplay

«ParamBindingGroup»
product product

Error

Error Message

«ParamBindingGroup»
Code Product.code
Price Product.price
Price Product.price
Category Product.category

«SimpleField» Code: string

«SimpleField» Name: string

«DataBinding» Product

«ConditionalExpression»

self = product

«Details» NewProductDetails

«Form» EnterProductData

«SimpleField» Price: integer

CreateNewProduct

CreateProduct

NormalTermination

ExceptionalTermination

«DynamicBehavior»

ProductFactory.
createProduct(…)

«SelectionField» Category

«DataBinding» Category

 «VisualizationAttributes» name

Example: Mobile Device, Camera Controls

[XOR] Photo Shooter

[D][L]«system»CameraCanvas

«Modal»CameraSettings

Shoot

[L] Viewer

«ScrollableList»Photos

«DataBinding» Image

BlockSize=1

PhotoAvailable

PhotoAvailable

«system»MediaGallery

«system»Media Gallery

OpenInMediaGallery

Example: NFC Controls

47

NFCCardSender
NFCCardReceiver

Send
ViaNFC

NFCDataReady Send

«Details»PersonalCard

NFCDataDiscovered

Save
Contact

«Details»ReceivedCard

Save

Discard

«ParamBindingGroup»
Payload.Name name
Payload.Phone PhoneNumber

…

Selection event

Submit event

.. And as many others as you want!

IFML – subtyping components and events

IFML by example

ActivationExpression, SubmitEvent, Event generation

IFML concrete syntax by example

intra-component events and flows

[L] MessageWriter

Send

«Form» MessageComposer

«SimpleField» to: String

«SimpleField» cc: String

«SimpleField» bcc: String

«SimpleField» subject: String

«SimpleField» body: String

«Parameter» State

«SimpleField» attachment: …

Save

AddCc

AddBcc

EditSubject

AddAttachment

Reply to all

Reply

Forward

Discard

«ActivationExpression»
State = “Reply” or
“Forward”

«ActivationExpression»
State = “Reply” or
“Forward”

«ActivationExpression»
State = “Reply” or
“Forward”

«ActivationExpression»
State != “Forward”

«ParamBindingGroup»
Subject  “Re” + subject
from  to
cc  cc
body  body
“Reply All”  State

«ParamBindingGroup»
Subject  “Re” + subject
from  to
cc  cc
body  body
“Reply All”  State

 «ParamBindingGroup»
 subject  “Fw” + subject
 body  body
 “Forward”  State

IFML example – online payment

Multiple aspects modeling – 1
(business and requirements)

UML Use Case BPMN process

UML Sequence

IFML

UML Statechart

Handle Rental

 Sales Clerk
Handle Renter

<<Include>>

<<Extend>>

Handover Car

<<UML Actor>>

 Sales Clerk

<<UML

Model>>

 IT

system

 new rental

change

days

accept

payment

Integration with UML Use Cases

Each use case can be described by

A business process

A plain UI description in IFML

Some UML dynamic diagrams (e.g., activity, sequence, …)

Handle Rental

 Sales Clerk
Handle Renter

<<Include>>

<<Extend>>

Handover Car

Integration with BPMN

The UI of each activity
can be described by

An IFML module

Some UML dynamic
diagrams (e.g.,
activity, sequence, …)

IFML concrete syntax by example

IFML Modules - definition

Example of UML - IFML mapping

IFML Model

<< Use Case>>

 Handle Rental

x
U

M
L
 U

s
e

 C
a
s
e

 D
ia

g
ra

m

<<xUML Actor>>

 Sales Clerk
<< Use Case>>

 Handle Renter

<<Include>>

<<Extend>>

<< Use Case>>

 Handover Car

<<UML Actor>>

 Sales Clerk

Handle

Rental

xUML Sequence Diagrams

<<UML Model>>

 IT system

new rental

change dates

accept payment

IFML models can be
 reworked or refined
 after being generated

Multiple aspects modeling – 2
(implementation and architecture)

UML Sequence

UML Deployment

IFML

UI Mockup models

Description of deployment architecture

UI is just one facet of system design

Often need to position it in a broader architectural vision

UML deployment diagram

Integration with UML

59

UML

Sequence

Diagrams

Tiers and
calls

Explicit
description of
interactions
between tiers

•Manual specification of BPMN process model

•Automatic transformation of BPMN to IFML

•Possible manual refinement of IFML models

•Automatic running code generation on J2EE platform

•Virtuous development cycle

Model-driven Development Process

(IFML)

The generated model artifacts

Goal taxonomy

Interleaving with
enterprise values

Example: from social networking goals..

As in the tradition of BPM design patterns, they capture
reusable solutions to recurrent socialization requirements:

Dynamic enrollment

Poll

People / Skill search

Social content publication

Social sourcing (vs. crowdsourcing)

Progress notification

Ranking and commenting

.. to design patterns

Socialization goals can be used as drivers for the selection of
the social BPM design patterns that are more relevant to a
process socialization effort

… and business objectives

Weak Ties /

Tacit

Knowledge

Transparency Participation
Activity

distribution

Decision

distribution

Social

f.back

Knowledge

sharing

Dynamic enrollment X

Poll X X

People / Skill search X X X

Social content

publication
X X

Social sourcing X

Progress notification X

Ranking and

commenting
X X X X

WebRatio runtime architecture
and extension for Social Business Logic

JSP engine

Browser

 Web Server

RDBMS LDAP XML ...

Unit descriptor 1

Unit descriptor n

Message
decomposer

SOAP sender / listener

Message
composer

...

...

Conversation
Manager

Standard components interactions

Processing of messages received by the site

Construction of messages sent by the site

WebML runtime

JSP pages
Business

Layer

Data
Layer

Presentation
Layer

Client Layer

Legenda

Data Layer

Social networks and social APIs

 (public or enterprise)

Social BPM

Components

IFML is defined through a metamodel

How does it work? IFML metamodel (1)

…

IFML metamodel (2): Content Binding

…

• Data binding to Classes and Attributes

• Dynamic Behavior to Methods and
Diagrams

An official metamodel of the language which describes the semantics of and
relations between the modeling constructs

A graphical concrete syntax for the interaction flow notation which provides an
intuitive representation of the user interface composition, interaction and control
logic for the front-end designer

A UML Profile consistent to the metamodel

An interchange format between tools using XMI

All this, specified through standard notations themselves

Practical results of having a standard

Static aspects

Also: interchange with profile-based diagrams.
The UML Profile for IFML

�

«page»
AlbumSearch

�

«page»
Albums

�

«page»
Album

Album Search Album Index Album Detail

Dynamic aspects

�

«index»
MBox List

�

«index»
Message

Index

SelectMailMessages(mBox)

BPMN and/or UML editor

Tight and seamless integration between different modeling tools

• Thanks to XMI interchange format, UML profiles, vendor-specific notation
implementations

• Thanks to model to model transformations

IFML modeling and
industrial-strenght

UI generation

Model integration and interchange

UML tool implementing
IFML profile

Other Domain-
specific modeling tool

XMI model
exchange

Model to

model

transformation

Joint usage of IFML with other MDA languages can be devised:

• SysML

• SoaML

• …

… and also with other frameworks (e.g., Model Driven Enterprise
Engineering)

Broader, enterprise-wide system modeling

The tool

Drawing vs. modeling

Tool support for MDE/MDD

An Eclipse-based development environment allowing:

Modeling: ER + IFML + BPMN

100% code generation of standard JEE applications

• Clear separation between design time and run time

• No proprietary runtime

Quick and agile development cycles

Extending the generation rules

• Defining new presentation styles

• Defining new components

Versioning, teamwork, full lifecycle mgt

Truly multi-role model-driven development

What is WebRatio

Requirement Analysis

Solution Modeling

Prototype Generation

Results Verification

WebRatio is

now at 7th release

on the market since 2001

WebRatio customers

130+ companies and 500+ commercial users

mainly Italy, USA, Europe and Latin America

WebRatio adoption

15,000+ users of the free edition

Used in hundreds of universities all over the world

WebRatio partners

40+ software houses and system integrators

300+ universities worldwide, 13.000+ students

Some numbers

You capture business requirements in abstract,
technology independent models

BPMN + IFML

WebRatio – Step 1

Business
User

WebRatio
Modeller

You customize the environment by defining your own
generation rules

HTML 5 + CSS + Java

WebRatio – Step 2

Layout
Designer

Java
Programmer

You get a tailored, yet standard, Java Web application
with no proprietary runtime

Code generation

WebRatio – Step 3

WebRatio
Modeller

Business
User

Get the application

Web
App
Web
App

DBMS

Browser

SOA
Custom

Information
System

Standard execution environment

Standard Java
Application

Server

Involve business users in the development process and
converge quickly to the target

Agile, quick prototyping

Requirement
Analysis

Solution
Modelling

Application
Generation

Results
Validation

Our innovation environment

Evolution of tool (and language)

The final picture

Agility + MDD

Development
Prototype

Test User

Zero-cost, 1-click,
prototype
generation

Final
Application

Development / Testing environment

Final execution environment Different deployment
configurations

Iterative, agile
development ?

Model

Generation
Rules

Generation
Engine

Final
App User

Model

Generation
Rules

Generation
Engine

Do not change the generated application code

Touch the generation rules instead

The MDE Virtuous Cycle

Generated
Application

?

Case Studies

Kinds of application

Corporate
Operations

Human Capital
Management

Product Life Cycle
Management

Customer
Relationship
Management

Enterprise
Resource
Planning

Supply Chain
Management

Knowledge
Support

Sales and Lead
Management

Marketing
Resources Mgt

Web Customer
Services

B2C/B2B
E-Commerce

Learning
Management

Document
Management

Project
Management

Customer
Information Mgt

Partner
Relationship Mgt

Recruitment

Training

Workforce
Management

Supplier
Relationship Mgt

Business
Intelligence

Web Content
Management

Knowledge
Management

Risk and
Compliance

Enterprise
Governance

Order Mgt

Payment Services
Orchestration

Web Front-End of
accounting sys.

Front-Office
Process Mgt

Financial
Services

B2C + CMS Web applications initially for 14 EU countries

Corporate news, Product technical & commercial data, Service &
Partner area, Where to Buy…

Multilingual, multi-actor, distributed workflows for local and
central PMs, local and central MarCom managers

... and a: very limited Time to Market (7 weeks!!)

Acer

Size & effort

Class Dimension Value

Number of localized B2C web sites 14

Number of main CMS applications 4 (Admin, News, Product, Other
content)

Number of supported languages 12 for B2C Web sites, 1 for
CMS

Number of data entry masks 39

Number of automatically generated database tables 46

Number of automatically generated database views 82

Number of automatically generated database
queries

279 for data extraction, 89 for
data update

Number of automatically generated JSP page
templates

48

Number of automatically generated or reused Java
classes

250

Size

Number of automatically generated Java lines of
code

12500 Non commented lines of
code

Number of elapsed workdays 49

Number of development staff-months (analysts and
developers)

6 staff-months (6 weeks x 4
persons)

Total number of prototypes 9

Average elapsed man days between consecutive
prototypes

5,4

Time &
effort

Average number of development man days per
prototype

15,5

Size & effort

DEGREE OF AUTOMATION

Number of manually written SQL statements 17(SQL constraints)

Percentage of automatically generated SQL code 96%

Number of manually written/adapted Java classes /JSP templates 10% JSP templates
manually adapted

Percentage of automatically generated Java and JSP code 90% JSP templates,
100% Java classes

COST AND ROI

Total cost of software development of first version 75.000 €

HW, SW licenses, and connectivity cost of first version 70.000 € (db server
license)

Return on investment of first version 12-15 months

Average effort of extension to one additional country 0,5 staff-months

Average cost of extension to one additional country 7.500 €

Average ROI of extension to one additional country 2 months

 PRODUCTIVITY

Number of function points 177 (B2C web site)
+ 612 (CMS) = 789

Average number of function points delivered per staff-month 131,5

On the positive side:

Almost 80% of the delivery effort concentrates in the phases of

data design, hypertext design and prototyping:

• more development time is spent with the application stakeholders

MDD allows a more flexible distribution of

responsibilities between the IT department and the

business units

The peak productivity rates has reached five times the

number of delivered function points per staff-month of

a traditional programming language like Java

Comments

On the negative side..

Acer estimates that it took from 4 to 6 months to have fully

productive developers with MDD, IFML, and WebRatio

Difficult to find skilled people

..but..

The initial investment in human capital required by MDD pays

off in the mid term

• MDD benefits testing, maintenance, and evolution (which account

for over 60% of the total lifecycle cost)

• reasoning on the system is far more effective at the conceptual

level

Comments (continued)

Maintenance effort

Served Contries and Applications

4 4 4 5 5

17

24

32

41

56

17
21

24
28

31

0

10

20

30

40

50

60

2001 2002 2003 2004 2005

Year

U
n

it
s

Number of developers

Number of

maintained

applications

Number of served

countries

• Public company owned by the City of Turin in Italy

• Local public transport serving 190 million passengers every

year.

• A new e-ticketing system (avail able at

http://ecommerce.gtt.to.it and serving 64,000 daily passengers)

• published on-line in only 2 months.

• The application comprises 100 page templates (IFML pages)

and 1215 IFML units.

• KEY: iterative and quick prototyping approach supported by

WebRatio

GTT: Turin Transportation Group

• Multi-utility company buying and selling wholesale electric

power.

• Integrated Energy Management System that replaced individual

productivity tools used by traders for the management of

electric power.

• KEY: quick prototyping approach and involvement of actual

users in the development process.

• Deployment of final app in 6 months after the initial meeting

with WebRatio (time to market that took one-third of the time

estimated in case of adoption of a traditional development)

A2A: Utility in Milan

• Banking (UniCredit)

• BPM + SOA + Web interfaces

• Crucial points: modularization, multiple models integration,

multiple tools integration, strict runtime platform

requirements

• Banking (ABI)

• System integration (Pure backend!)

• Why IFML?

• Latin America

• Cooperatives, banks, public bodies, central government

• Wholesale (IKEA)

• Financial / leasing (GE Capital)

Other experiences

• Models integration

• Large applications with strong need for coherence and

standardized paradigms

• Cooperatives, banks, public bodies, central government

• Service orientation

• No pure modeling exists

• Code generation still win-win

Where IFML works

Components and pages per project

1"

10"

100"

1000"

10000"

100000"

10" 100" 1000"

N
u
m
b
e
r'
o
f'
u
n
it
s'

Number'of'pages'

M
an

2d
ay
s'
p
e
r'
p
ag
e
'a
n
d
'p
e
r'
u
n
it
'

Components per page (avg)

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

0.2"

30" 300" 3000"

Ef
fo

r

t&
(m

an
/d
ay
s&
p
e
r&
u
n
it
)&

Effo

r

t&per&project&(man/days)&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

30" 300" 3000"

Ef
fo

r

t&
p
e
r&
p
ag
e
&(
m
an

/d
ay
s&
p
e
r&
p
ag
e
&

Effo

r

t&per&project&(man/days)&

Man/days per component

Man/days per page
0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

0.2"

30" 300" 3000"

Ef
fo

r

t&
(m

an
/d
ay
s&
p
e
r&
u
n
it
)&

Effo

r

t&per&project&(man/days)&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

30" 300" 3000"

Ef
fo

r

t&
p
e
r&
p
ag
e
&(
m
an

/d
ay
s&
p
e
r&
p
ag
e
&

Effo

r

t&per&project&(man/days)&

Tool usage stats

S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera: Designing Data-
Intensive Web Applications, Morgan-Kaufmann Publishers, San Francisco, ISBN 1-55860-
843-5 (Series edited by Jim Gray, foreword by Adam Bosworth) 590 pages.

M. Brambilla, J. Cabot, M. Wimmer: Model Driven Software Engineering in Practice.
Morgan & Claypool, USA, September 2012, foreword by Richard Soley (OMG), 184 pages.
ISBN 978-1608458820.

Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali: Model-driven design and
deployment of service-enabled web applications. ACM Trans. Internet Technology (TOIT).
5(3), pp. 439-479 (2005).

M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu: Process modeling in Web applications.
ACM Trans. Softw. Eng. Methodol (TOSEM). 15(4), pp. 360-409 (2006).

 M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. M. Facca: Model-Driven
Design and Development of Semantic Web Service Applications, ACM Trans. on Internet
Technology (TOIT). 8(1), pp.3:1 - 3:31 (2007).

M. Brambilla: From Requirements to Implementation of Ad-hoc Social Web Applications: an
Empirical Pattern-Based Approach. IET Software, 6(2), 2012, pp.114-126.

M. Brambilla, S. Ceri, S. Comai, C. Tziviskou. Exception Handling in Workflow-Driven Web
Applications. WWW 2005 Int. Conference on World Wide Web. ACM, pp. 170-179.

(some) references

Some Ads

“Model Driven Software
Engineering in Practice”.

Brambilla, Cabot, Wimmer.

Morgan&Claypool, USA, 2012
MD* blog

www.modeldrivenstar.com

And the upcoming IFML book!

Morgan-Kauffman – Elsevier, USA, 2014

http://www.modeldrivenstar.com

Marco Brambilla

 marcobrambi

marco.brambilla@polimi.it

Thanks!

