Towards a Lightweight Model Driven Method for
Developing SOA Systems Using Existing Assets

Maurizio Leotta, Gianna Reggio, Filippo Ricca, Egidio Astesiano

Abstract:

Developing SOA based systems and migrating legacy systems to SOA are difficult and error
prone tasks, where approaches, methods and tools play a fundamental role. For this reason,
several proposals have been brought forward in literature to help SOA developers.

This paper sketches a novel method for the development of systems based on services, i.c.,
adhering to the SOA paradigm, which follows the model driven paradigm. Our method is
based on a “meet-in-the-middle” approach that allows the reuse of existing assets (e.g.,
legacy systems).

The starting point of this method is a UML model representing the target business process
and the final result is a detailed design model of the SOA system. The method, explained in
this paper using a simple running example, has been applied successfully within an industrial
project.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/WSE.2012.6320532

Copyright:

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Towards a Lightweight Model Driven Method for Developing SOA Systems
Using Existing Assets

Maurizio Leotta, Gianna Reggio, Filippo Ricca, Egidio Astesiano
Dipartimento interscuola di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS)
Universita di Genova, Italy
{maurizio.leotta|gianna.reggiolfilippo.ricca|egidio.astesiano } @unige.it

Abstract—Developing SOA based systems and migrating
legacy systems to SOA are difficult and error prone tasks,
where approaches, methods and tools play a fundamental role.
For this reason, several proposals have been brought forward
in literature to help SOA developers.

This paper sketches a novel method for the development of
systems based on services, i.e., adhering to the SOA paradigm,
which follows the model driven paradigm. Our method is based
on a ‘“meet-in-the-middle’” approach that allows the reuse of
existing assets (e.g., legacy systems).

The starting point of this method is a UML model represent-
ing the target business process and the final result is a detailed
design model of the SOA system. The method, explained in
this paper using a simple running example, has been applied
successfully within an industrial project.

Keywords-Precise Style; Model Driven; SOA; UML.

I. INTRODUCTION

Service-Oriented Architecture (SOA) is widely recognized
as a suitable architectural style for building enterprise ap-
plications/systems. The cornerstones of such applications
are the services (often implemented as Web services), i.e.,
autonomous platform-independent entities that enable access
to one or more capabilities by means of interfaces.

In literature, several approaches and methods have been
proposed to design SOA systems (e.g., SOMA! and
SOAD?); all have in common, more or less, the same starting
point that is constituted by the business process that has to
be automated (the target business process).

In this paper, we propose a method, already applied in
an industrial context, for the development of systems based
on services that has in common with the other methods the
same starting point, but presents some specific characteris-
tics/features. The main features are the following.

First, it follows the model driven paradigm. The starting
point is a UML model representing the target business
process that will be transformed till to reach a UML detailed
design model of the system, that can then be (automatically)
transformed into a running system, realized using Web
services. Second, our method is lightweight since it does not
need expensive and complex tools to transform the models,

Uhttp://www.ibm.com/developerworks/library/ws-soa-design1/
Zhttp://www.ibm.com/developerworks/webservices/library/ws-soad 1/

instead it provides detailed guidelines for transforming the
models that can be executed manually using just a UML
modeller. Finally, all the produced UML models (from the
more abstract to the more concrete) are expressed using
the “precise style” [18], that requires, e.g., to use OCL to
express the conditions instead of natural language fragments.
The “precision” helps to avoid the most common modelling
errors and to follow the guidelines. Precise UML models
can be given a formal semantics, but our method does not
aim to formal verification and analysis.

This method is intended for the software developers and
thus the UML notation has been preferred to the BPMN [13],
because the UML is today the “lingua-franca” in the field
and, moreover, it may be used in all the development phases
and for all the aspects of the systems (e.g., for designing a
specific service).

The main contribution of this paper is a lightweight model
driven method for developing SOA systems composed by a
set of Web services and an orchestrator. We do not consider
here other SOA aspects such as dynamic service discovery
(i.e., UDDI), choreography, adaptiveness or awareness [5].

The proposed method leads to the generation of an
orchestrator following the model driven paradigm and can
be applied both to the development of new SOA systems
and to the migration towards SOA of already existing
systems. Indeed, our method follows a “meet-in-the-middle”
approach [6], namely using services built from scratch or
taking advantage of already available services (e.g., offering
technical and support functionalities) or assets wrapped to
create services (such as, e.g., software components and
legacy systems) [21].

The paper is structured as follows. Sect. II presents the
four phases of our development method and its relevant
aspects using a simple running example. Sect. III briefly
sketches the industrial project in which the method has been
applied. Sect. IV discusses advantages, characteristics and
future improvements of our method. Sect. V presents related
work. Finally, Sect. VI concludes this work and summarizes
our ongoing and future work.

II. THE METHOD

We propose a method for the development of systems
based on services that follows the model driven paradigm.
The system to be developed should automatize a specific
business process. The starting point is thus a UML model
representing that business process.

We emphasize that our method requires all the produced
UML models to be precise, i.e., they must be statically
correct and all the required expressions are given using
OCL and all basic behaviours are UML actions as defined
in [14]. Examples of UML precise models can be found, e.g.,
in [1] and the “precise” activity diagrams for representing
the business processes are fully presented in [18].

In a nutshell, the “precise style” prescribes that the
participants of a business process are explicitly listed and
precisely modelled with the UML by means of classes, and
that the process behavioural view is given by an activity
diagram. Thus, our UML precise model of a business process
consists of: a class diagram introducing the classes needed
to type its participants, the list of its participants, and an
activity diagram representing its behaviour, where all nodes
(arcs) are decorated by UML actions (OCL expressions).
Participants of the business will have a name and will be
typed by classes with stereotype either <businessWorker>>
(human beings) or «system>> (hardware/software systems)
or <businessObject> (business objects). From previous
empirical studies, we have seen that this style improves the
quality of the business process models expressed as activity
diagrams [17], and that it is better than a lighter style where
nodes and arcs of the activity diagrams are simply decorated
by natural language text [4].

The proposed method for developing a service system,
say SOAsystem, automatizing a business process consists of
the following phases:

o Business Process Modelling — BusinessProcessMod

o Placement (to define the part of the process that will
be automatized by the system) — PlacementMod

o High Level Design — DesignMod

o Detailed Design — DetailedDesign

o Automatic Coding — BPEL implementation

We present here the first four phases of our method using
a small example: the Loan case study. It has been created
simplifying a real business process of the banking system:
determining whether or not a home buyer is eligible for a
loan.

A Home Buyer (HB) asks for a loan filling a form. HB
delivers the form to a clerk. The form is archived on a
repository. After that the clerk obtains two information about
the HB making use of an external credit bureau: the credit
score (high, medium, and low) and the monthly income. In
case of low credit score the loan is rejected, otherwise the
clerk calculates the monthly installment of the loan using the
credit score. Afterwards, the clerk verifies that the monthly

calculated installment is lower than half of the HB’s monthly
income; if it is, the loan is accepted otherwise is rejected. In
the end, the clerk creates the answer that has to be delivered
to the home buyer and to be archived on a repository. The
answer contains the retrieved/calculated information and the
loan granting evaluation. A service system has to be devel-
oped to automate the above business process now performed
by a human (the clerk). The clerk uses an external (credit
bureau) system by mean of a GUI, however such system
offers the same capability in a machine-processable version
(i.e., a Web service), so the system under development can
make use of it.

A. Business Process Modelling

The first phase of our method consists in describing the
business process “as it is” by means of a UML model called
BusinessProcessMod that represents the business before the
introduction of the SOAsystem. At this level the UML model
has to be close as much as possible to the given description
of the business.

The result of this activity in the Loan case study is the
UML model reported in Fig. 1. As required, the model is
composed by two diagrams: an activity diagram and a class
diagram. In the Loan process, as reported in the note in
the activity diagram, there are two business workers (home
buyer and clerk), a system (credit bureau) and four business
objects (form, info, installment, and answer). The variables
(e.g., the decision DEC) are just containers for data values.
Note that some operations on the business objects are given
in passive form (e.g., ANS.archived() and ANS.sent(HB)) to
abstract in the model from who will perform such actions.
For example, we know that the clerk creates the answer, but
nothing is said about who actually sends the answer to the
HB. If, instead, it is assumed that the clerk will send the
answer we could modify accordingly the model adding a
sending operation to the Clerk class.

This model, as all the other models created following our
method at each phase, can be enriched, if it is necessary,
with other UML diagrams or details that increase the level
of information provided (e.g., pre-post conditions, invariant
constraints and sequence diagrams).

B. Placement

The aim of the placement phase is deciding which part of
the business process will be performed by the SOAsystem.
The placement is done using a swimlane labelled by the
name of the system (in our case study LoanSys). The part
of the process that has to be performed by the SOAsystem
will be placed inside the swimlane. It could happen that an
activity is not totally of competence of the SOAsystem: in
this case the activity will be placed over the lane boundary.
The placement is correct only if:

¢

GO RM = HB.deIiver(CLERKD

ﬁ

GORM.archivedD @FO = CLERK.asklInfo(CRBU, FORMD

[INFO.score = low]

[else]

CINST = CLERK .calcInstall(FORM, |NFO.SCOI’e)>

[INST.amount <
INFO.income/2]

[else]

@EC = rejected) @EC = acceptea @EC = rejecte(D

e

v

CANS = CLERK.generateAnswer(INFO, INST, DEC))

Vi

ANS archived()

ANS.sent(HB)

\

®

Systems

Variables

BusinessWorkers HB :HomeBuyer, CLERK : Clerk
CRBU : CreditBureau
BusinessObjects FORM:Form, INFO : Info, ANS : Answer
INST : Installment
DEC : Decision

(a) Activity Diagram

<<businessWorker>> <<businessObject>> (| <<businessObject>> <<enum>>
Clerk Info Answer Decision
asklInfo(CreditBureau, Form) : Info income : int archived() accepted
calclnstall(Form, Score) : Installment score : Score sent(HomeBuyer) rejected
generateAnswer(Info, int, Decision) : Answer <<enum>>
Score - -
<<businessWorker>> <<businessObject>> high <<businessObject>>
HomeBuyer Form medium <<system>> Installment
deliver(Clerk) : Form archived() . CreditBureau | | amount : int

(b) Class Diagram

Figure 1.

« at least one activity is placed inside the SOAsystem

swimlane (no activities in the swimlane means that the
system will do nothing);

no activities performed by business workers are inside
the swimlane (the system cannot replace the behaviour
of a human being that it is unpredictable and not
computable, e.g., an examiner of future employees or
of the artistic value of a novel);

at least an activity should be placed on the border of the
swimlane (such an activity will result in communication
between the system and some external entity);

Loan Case Study: BusinessProcessMod

no activity flow (control and object) can cross the
swimlane boundary (a crossing flow means a hidden
communication between the system and some external
entity).

Therefore, only the following types of activities can be
placed inside the SOAsystem swimlane:

passive activity of a business object: it means that the
SOAsystem will execute the activity on the object (e.g.,
ANS.archived());

activity performed by a pre-existing system: the
SOAsystem will replace the existent system in the

LoanSys

\I/—CFORM = HB deliver(CLERK)) <{)

Vi

FORM.archived()

QNFO = CLERK askinfo(CRBU, FORMD

[INFO.score = low]

[else]

(INST = CLERK.calcInstall(FORM, INFO.score))

[INST.amount <
INFO.income/2]

[else]

DEC = rejected) (DEC = accepted) (DEC = rejecled)

CANS = CLERK generateAnswer(INFO, INST, DEC))

ANS .archived()

ANS.sent(HB))

®

Figure 2.

execution of the activity (not applicable to our case
study);

o operations on the process variables (e.g., DEC = re-
jected).

The method prescribes first to do the placement following
the requirements of the stakeholders, then to check if it is
correct. In case of negative answer, the business process
has to be refactored so that the placement will become
correct. For example, activities previously performed by
human being must be assigned to systems or to business
objects, making them computable (e.g., the evaluation of
an employee is made by marking a multiple choice ques-
tionnaire, or the quality of a novel is assured by a list of
computable syntactic checks). If is not possible to refactor
the model to satisfy the constraints, then the developer has to
either change the placement or to conclude that the intended
system is not doable.

The result of this phase is the PlacementMod, having the
form of a BusinessProcessMod where part of the activity
diagram is included in one swimlane named as the system
to develop.

The creation of the PlacementMod for our system has
required a model refactoring step in order to eliminate the

Loan Case Study: PlacementMod (first version — it does not satisfy the placement rules)

activities of the clerk. The initial placement (that does not
satisfy the placement rules) is shown in Fig. 2, whereas
in Fig. 3 we present the final placement obtained by one
refactoring step, that transforms the activities of the clerk
into operations over the business objects ANS and INST and
over an external system CRBU. The idea is that now the
three tasks are executed by LoanSys instead of by the clerk.

C. High Level Design

The goal of this phase is providing a high level design
of the SOAsystem to build, providing a description of the
activities carried out by the system itself. It is important to
highlight that in this phase there are no details about the
inner structure of the SOAsystem (e.g., information about
the used services). During this phase a UML model called
DesignMod is produced.

We start from the PlacementMod and transform it.
First, for each participant of type <businessWorker> and
< system>> we add to the activity diagram a new swimlane
labelled by its name. Then, each action node on the border of
the SOAsystem swimlane must be decomposed into several
action nodes, including some call action nodes and accept
nodes, deployed in the swimlanes of who calls and of who

LoanSys

D<@

\1/—< HB.deliver(FORM)

FORM.archived()

(INFO = CRBU.askedInfo(FORM))

[INFO.score = low]

[else]

(INST = calculated(FORM, INFO score))

[INST.amount <
INFO.income/2]

[else]

(DEC = rejected)(DEC = accepted) (DEC = rejected)

v

%,

(ANS = generated(INFO, INST, DEC))

ANS.archived()

ANS.sent(HB))

(a) Activity Diagram

<<businessObject>>
Answer

<<businessObject>>
Installment

<<businessObject>>
Info

archived()

amount : int

income : int

sent(HomeBuyer)

calculated(Form, Score) : Installment

score : Score

generated(Info, Installment, Decision) : Answer

<<enum=>>
<<enum>> Score
<<businessObject>> <<businessWorker>> <<system>> Decision high
Form HomeBuyer CreditBureau accepted it
archived() deliver(Form) askedInfo(Form) : Info| | rejected low
(b) Class Diagram
Figure 3. Loan Case Study: PlacementMod (Refactored - it satisfies the placement rules)

accepts/receives. In this model we represent the call and the
accept/receive actions respectively by T3 and by ¥—. Then
we add a dashed connector between the pairs of action nodes
modelling communications of the system with the external
entities. For example, the action FORM = HB.deliver(CLERK)
present in the PlacementMod (Fig. 2) will become in the
DesignMod (Fig. 4) a call action of the HB and an accept
action of the LoanSys. Similarly, it happens for the actions
INFO = CRBU.askedInfo(FORM) and ANS.sent(HB).

3We are aware that the UML reference [14] asserts that only send signal
actions can be represented in this way, but here we use this icon also for
call actions.

In Fig. 4 we report the DesignMod for the Loan case
study. The activity diagram contains three swimlanes: one
is for LoanSys (the system under development), one for the
business worker that interact with it (HB, the home buyer)
and one for the external system (CRBU, Credit Bureau).
Notice that at this level of description, all the activities in
a swimlane are assumed as executed by the entity labelling
the swimlane itself, and for simplifying the model we do no
report such name in the various nodes; thus archive(FORM)
is a shortcut for LoanSys.archive(FORM).

LoanSys HB CRBU

?

> FORM = receiveForm() L — ————1{ send(FORM)
v
V

Carchive(FORM)) l INFO = askInfo(FORM) >— —————————— —
4 Vi

aive(INFO,
FORM

[INFO.score = low]

[else]

(INST = calclnstall(FORM, INFO.score))

(DEC = reject [else]
[INST.amount <
INFO.income/2]

(DEC = rejected) (DEC = accepted)
/'v\

(ANS = generateAnswer(INFO, INST, DEC))

V v/ > ANS =

archive(ANS) l sendAnswer(ANS) > -r receiveAnswer()
BusinessWorkers HE HomeBuyer B

BusinessObjects FORM: Form, INFO : Info, ANS: Answer, [INST: Instalment
Variables [DEC: Decision Systems LoanSys : System, CRBU: CreditBureau

(a) Activity Diagram

<<system>> <<businessWorker>> <<enum>> <<businessObject>> <<businessObject>>

LoanSys HomeBuyer Decision newer Installment
receiveForm() : Form send(Form) accepted amount : int
askinfo(Form) : Info receiveAnswer() : Answer| | rejected
calcinstall(Form, Score) : Installment SR
generateAnswer(Info, int, Decision) : Answer | [<<businessObject>> Score
sendAnswer(Answer) Info <<system>> - - high
archive(Form) income : int CrediiBlirean <<businessObject>> TSI
archive(Answer) score : Score give(Info, Form) L low

(b) Class Diagram
Figure 4. Loan Case Study: DesignMod
D. Detailed Design The orchestrator coordinates the execution of the different

The last phase produces a UML model called Detailed- services and, if necessary, performs some data elaborations.

Design that depicts the detailed design of the SOAsystem, Our method leads to the generation of an orchestrator
composed by an orchestrator, some GUI(s) allowing the following the model driven paradigm and the realization of
interaction with human users and external systems, and some the services following a “meet-in-the-middle” approach [6],
services. namely building them from scratch or taking advantage of al-

hd

FORM = receiveForm()]

Vi

| AS.save(FORM) | INFO = CS.requestinfo(FORM)

[INFO.score = low]

[else]

INST = IS.calcinstall(FORM, INFO.score) >

[else]

[INST.amount <
INFQ.income/2]

CDEC = rejecte(D @EC = acceptecD (DEC = rejecte(D

\
W

C ANS = generateAns(INFO, INST, DEC))

\/ V

| ASsave(ANS) > [MS.sendMail(ANS tostring()) >

®

Services AS: ArchiveService, IS: InstallmentService,
CS: CreditService, MS: MailService

Variables FORM: Form, INFO: Info, ANS: Answer,
INST: Installment, DEC: Decision

o LoanSys_ _ _ _ _ _ _ N
| : = -
InstallmentService | | rArchiveService | |
' |
' |
| | |
|
| : Orchestrator : CreditService |
' |
' |
| | |
' [
| <|)
> HomeBuyer

Figure 5. Loan Case Study: DetailedDesign, Orchestrator Behaviour Figure 6. Loan Case Study: DetailedDesign, Architecture
<<service>> <<service>> <<datatype>> <<gui>> <<service>> <<enum>>
InstallmentService CreditService Form HB-GUI MailService Score
calclnstall(Form, Score) : Installment|| requestinfo(Form) : Info sendMail(string) || high
medium
<<datatype>> <<service>> <<enum>> <<datatype>> low
Answer ArchiveService Decision Info <<datatype>> | | <<orchestrator>>
generateAns(Info, int, Decision) : Answer || save(Form) accepted income : int Installment Orchestrator
toString() : string save(Answer) rejected score : Score amount : int receive() : Form

Figure 7.

ready available services (e.g., offering technical and support
functionalities) or assets wrapped to create services (such
as, e.g., software components and legacy systems) [21].
It could happen that for using an existing service some
minor modifications have to be done to the DetailedDesign
(e.g., writing some adapters [12]). For the Loan case we
have the following portfolio of already available services:

Loan Case Study: DetailedDesign, Class Diagram

CreditService (for accessing CreditBureau), ArchiveService
(for accessing the bank archive) and MailService (email).

The services are modelled by interfaces stereotyped by
<service>>, whose operations will model the ways for
interacting with the service itself. As in the other phases,
the functionalities of a service (and needed data structures)
may be modelled using the UML at different level of ab-
straction, e.g., adding more information about the behaviour

of their operation by means of pre-post conditions, invariant
constraints and sequence diagrams.

The orchestrator will be modelled by an activity diagram
derived from the DesignMod in the following way. For
each action node in the system lane of the activity diagram
part of the DesignMod check whether it may be realized
using a functionality of an available service. In case of a
positive answer, the action is transformed in a call of the
corresponding service functionality, otherwise ask if a new
service may be developed to support it and then uses its
functionalities to realize the action. If no service (existing
or built on the moment) is available the effect of the action
node will be realized by the orchestrator using the classical
0-O statements (e.g., assignments or operation calls). In
the Loan we built a new service, InstallmentService, for
the computation of the installment for a loan (since it may
be used by other banking activities, as personal loans and
company financing).

The DetailedDesign consists of:

« aclass diagram, describing the services, the GUI(s), and
the datatypes used to model the needed data structures;

« arepresentation of the system architecture by means of
an object diagram;

e an activity diagram modelling the behaviour of the
orchestrator.

In the following we show the DetailedDesign of the
LoanSys.

Fig. 6 reports the architecture for LoanSys; it is com-
posed by the orchestrator, developed following our method,
four services (ArchiveService, MailService, InstallmentSer-
vice and CreditService), and a GUI (developed using stan-
dard techniques) that allows the HomeBuyer (1) to fill the
Form and (2) to send the filled Form to the system (or more
precisely to the Orchestrator)

The Orchestrator (see Fig. 5) uses various global vari-
ables, e.g., ANS and DEC, and we assume that it can receive
events (as for the FORM = receiveForm()) and call services
(e.g., AS.save(FORM)). The used services and (global) vari-
ables are listed in a note placed under the activity diagram.

Fig. 7 presents the class diagram. The ArchiveService has
two operations corresponding to the offered capabilities to
archive a form and an answer, whereas the CreditService has
one operation with return type, modelling the capabilities to
return the credit information concerning a form.

III. INDUSTRIAL PROJECT

The method proposed in this paper can be easily adapted
to the development of domain specific systems. Indeed,
in a project with two local companies, starting from this
proposal, we have devised a method for developing VECM-
based systems [9] and, as an application, used it to build a
system, named V-protocol, for the management of the an-
nouncements of public competitions received by a company.

VECM is a software interface that allows developing
systems not tied to specific characteristics of a particular
ECM. An ECM (Enterprise Content Management) is a
system used to capture, manage, store, and deliver enter-
prise content. It provides operations on documents such as:
createDocument() and deleteDocument(). There are many
ECM systems available on the market, e.g., Alfresco (open
source) and SharePoint (Microsoft). Usually, the companies
build their systems using several ECM systems characterized
by different interfaces; for example, a bank that uses an
ECM system to manage credit transfer and another one
for loans. Often, the consequence of this practice is the
development of a system highly coupled with the underlying
ECM systems. The VECM software interface solves this
problem. In practice, the VECM allows to develop systems
not tied to the specific characteristics of a particular ECM.

The adaptation of the method proposed in this paper to the
VECM case consists of a modification of the fourth phase of
our method (Sect. II-D). In this case there is a unique kind
of service whose functionalities correspond to the VECM
operations (e.g., createDocument() and deleteDocument()).
All the operations not supported by VECM have to be
executed by the orchestrator and if it is not possible they
have to be substituted by calls to additional services. In this
project, we experienced that our method leads to a proper
use of the VECM component and allows creating VECM-
based systems easily and effectively.

IV. DISCUSSION

Our method leads the business modellers and developers
in all the development phases: reducing errors (1) in the
models and (2) in the final system, (3) being lightweight,
(4) not exposing the company to vendor lock-in, with
no need of (5) complex tools and (6) expensive training,
and (7) allowing “high reuse” of personnel knowledge (in
particular UML). Taking inspiration by [11] we summarize
our experience with the proposed method by answering the
following questions.

What are the advantages / characteristics of the method?

« It follows the model driven paradigm [8] and uses only
a well-known subset of UML (substantially only class
and activity diagrams). Thus, this justifies (6) and (7).

¢ Our method is lightweight since it does not need ex-
pensive and complex software tools; it can be executed
manually using only a UML modeller (e.g., Visual
paradigm or Magic Draw). Thus, this justifies (3), (4)
and (5).

o All produced UML models (from the more abstract to
the more concrete) are expressed using the “precise
style” [4] to avoid the more common modelling er-
rors [17] and to allow the final semi-automatic transfor-
mation. Thus, this justifies (1) and (2). From previous
empirical studies, we have seen that the “precise style”
is better than a lighter stile where nodes and arcs of

the activity diagrams are simply decorated by natural
language text [4].

« Differently from [11], where four different notations
are used, our method concerns transformations between
models expressed within the same language (UML
“precise style”), and thus a unique notation is required
in all phases and for all the aspects of the system to
develop. Thus, this justifies (6) and (7).

e Our method leads the developers during the transfor-
mations prompting the needed decisions till to reach a
detailed model that can be automatically transformed
into running code. Thus, this justifies (1) and (2).

What can be done for improving the method?

o Currently, it only allows to describe the Web services
interfaces. We plan to extend our method to provide
a mechanism for the description of the Web services
semantics [3] and realizations, making it possible to
automatically generate their implementations following
the model driven paradigm.

o Our method, up to now, makes use of class and activ-
ity diagrams only. We plan to extend our method to
include other UML diagrams such as state machines
and sequence diagram to provide more information on
the system.

¢ It is not clear how much is the real manual effort of
application of our method. In [9], it was acceptable but
further experimentation is needed.

V. RELATED WORK

Different approaches can be used in the development of
SOA-based systems. They can be classified in three main
categories: top-down (when at the beginning no services are
available), bottom-up [7] (when as first step the services are
collected/built) and meet-in-the-middle [6] (that combines
the previous two approaches: some services are available
at the beginning and others are developed). The latter two
kinds of approaches are the most suited to migrate existing
applications towards SOA. The top-down approach can be
further divided into two types such as: business process
driven and use case driven. Our approach belongs to the
business process driven type meet-in-the-middle category.

In literature, there are several works concerning the
creation of SOA systems starting from UML [14]
or BPMN [13] models. Usually, such models are
automatically/semi-automatically or manually transformed
in executable code. For example, Ouyang et al. [15] present
a technique for generating BPEL code from business process
models expressed in a core subset of BPMN and UML
Activity Diagram. In practice, they only focus on the last
transformation step of our method. Bauler at al. [2] pro-
pose how Model Driven Engineering and Business Process
Management can be combined to generate executable BPEL

processes. Matjaz et al.* show how, given a business model
expressed in BPMN, is possible translate it into BPEL and
execute the code on a SOA platform. Differently from them,
we mainly focus on how to build the models.

Transformations between models of different kind have
been proposed too: for example Rychly et al., in [19],
propose a method aimed to transform business processes
modelled in BPMN into UML service diagrams. This is
different from our method where the transformations involve
models expressed with the same notation but at different
levels of abstraction.

We have chosen to use UML as the basic notation for our
method but we are aware that others proposals are based on
BPMN. We prefer to stick to use the UML only to require the
method’s user to know and master a unique notation instead
of two or more. The UML activity diagram has been shown
as expressive as the BPMN 1.x diagrams [16]. Moreover,
we believe that the BPMN 2.0 does not offer anything not
already available in the very large list of constructs of UML
(also if more a comprehensive analysis is needed):

e BPMN private and public processes correspond to
UML activity diagrams (more precisely the non-
executable ones to the “ultra-light” activity diagrams
of [18] and the executable ones to the “precise” activity
diagrams);

« BPMN 2.0 collaborations and choreography may be
replaced by the UML collaborations and various kinds
of interaction diagrams (e.g., sequence diagrams);

« BPMN 2.0 conversations may be replaced by UML
composite structure diagrams built with collaboration
uses.

On the converse BPMN 2.0 does not offer native means
to describe the computational aspects of the processes (e.g.,
data structures and computations over them).

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a model driven approach
to develop SOA-based systems, starting from a business
process model. Our approach is based on UML model
transformations and starts from a model describing the
business process “as it is”. The final artefact is a detailed
design model of the SOAsystem, where the orchestrator
component may be automatically transformed into running
code (e.g., BPEL).

The method can be considered effective and applicable in
real systems because we have experienced [9] that usually
business models are small so they can be manually built.
Moreover, as general rule, having large business process
models it is not advisable [20].

Future work will be devoted to refine our method and test
it with other case studies. We intend apply it to a complex

“http://www.oracle.com/technetwork/articles/soa/process-driven-soa-
100743.html

postal process already implemented in a legacy system that
we have analyzed in a previous industrial project [10].

Moreover, we plan to design an Eclipse plug-in supporting
our model driven method. We believe that Eclipse could be a
good choice as development toolkit because of its popularity
and Acceleo’ for the model to text transformations needed
in the last step of our method. Furthermore, the Eclipse
Plug-in Development Environment (PDE) provides a nice
environment for creating plug-ins and integrating them with
the Eclipse Platform. The support will offer the way to
automatically checking the models to see if they meet all the
constraints required by the method (e.g., in Sect. II-B) and
a generator of BPEL code starting from the DetailedDesign
produced in the last phase of the method. The BPEL code
will invoke the existing Web services or the ones that have to
be realized. All the detail contained in the DetailedDesign
will allow an automatic translation of the orchestrator in
BPEL.

REFERENCES

[1] E. Astesiano and G. Reggio. Tight Structuring for Precise
UML-based Requirement Specifications. In M. Wirsing,
A. Knapp, and S. Balsamo, editors, Radical Innovations of
Software and Systems Engineering in the Future, Proceedings
9th Monterey Software Engineering Workshop, Venice, Italy,
Sep. 2002., number 2941 in LNCS. Springer Verlag, Berlin,
2004.

[2] P. Bauler, F. Feltz, E. Frogneux, B. Renwart, and C. Thomase.
Usage of model driven engineering in the context of business
process management. In Proceedings of Multikonferenz
Wirtschaftsinformatik, MKWI 2008, Miinchen, 26-28.2.2008,.
GITO-Verlag, Berlin, 2008.

C. Choppy and G. Reggio. A well-founded approach to
service modelling with casl4soa: part 1 (service in isolation).
In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC 10, pages 2451-2458, New York, NY,
USA, 2010. ACM.

[4] F. Di Cerbo, G. Dodero, G. Reggio, F. Ricca, and G. Scan-
niello. Precise vs. Ultra-Light Activity Diagrams - An
Experimental Assessment in the Context of Business Process
Modelling. In D. Caivano, M. Oivo, M. Baldassarre, and
G. Visaggio, editors, Proceedings of 12th International Con-
ference on Product-Focused Software Process Improvement
(PROFES 2011), volume 6759 of Lecture Notes in Computer
Science, pages 291-305. Springer Berlin / Heidelberg, 2011.

S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso,
and F. Zambonelli. A Roadmap Towards Sustainable Self-
aware Service Systems. In Proceedings of SEAMS 2010,
pages 10-19, New York, NY, USA, 2010. ACM.

[6] S. Inaganti and G. K. Behara. Service Identification: BPM
and SOA Handshake. BPTrends, 2007.

[7]1 S. Jones. Enterprise SOA Adoption Strategies: Using SOA to
deliver IT to the Business. C4Media Publisher, 2006.

[8] A. G. Kleppe, J. Warmer, and et al. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-
Wesley Longman Publishing Co., Inc, 2003.

3

—

[5

—

Shttp://www.acceleo.org/

91

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

M. Leotta, G. Reggio, F. Ricca, and E. Astesiano. Building
VECM-based Systems with a Model Driven Approach: an
Experience Report. In Proceedings of Ist International
Workshop on Experiences and Empirical Studies in Software
Modeling (EESSMod 2011 co-located with MoDELS 2011),
volume 785, pages 38—47. CEUR Workshop Proceedings,
2011.

M. Leotta, F. Ricca, G. Reggio, and E. Astesiano. Com-
paring the Maintainability of two Alternative Architectures
of a Postal System: SOA vs. non-SOA. In Proceedings
of 15th European Conference on Software Maintenance and
Reengineering (CSMR 2011), pages 317-320. IEEE Com-
puter Society Press, 2011.

A. Marchetto, C. D. Nguyen, C. Di Francescomarino, N. A.
Qureshi, A. Perini, and P. Tonella. A Design Methodology for
Real Services. In Proceedings of the 2nd International Work-
shop on Principles of Engineering Service-Oriented Systems
(PESOS 2010), pages 15-21, New York, NY, USA, 2010.
ACM.

R. C. Martin. Design principles and design patterns. 2000.

OMG. Business Process Model and Notation, v. 2.0. Stan-
dard, 2011.

OMG. Unified Modeling Language, Superstructure, v. 2.4.
Specifications, 2011.

C. Ouyang, M. Dumas, S. Breutel, and A. ter Hofstede.
Translating Standard Process Models to BPEL. In E. Dubois
and K. Pohl, editors, Proceedings of 18th International
Conference on Advanced Information Systems Engineering
(CAISE 2006), volume 4001 of Lecture Notes in Computer
Science, pages 417-432. Springer Berlin / Heidelberg, 2006.

D. Peixoto, V. Batista, A. Atayde, E. Borges, R. Resende,
and C. Pddua. A Comparison of BPMN and UML 2.0
Activity Diagrams. In VII Simposio Brasileiro de Qualidade
de Software. Florianopolis, 2008.

G. Reggio, M. Leotta, and F. Ricca. “Precise is better
than Light” A Document Analysis Study about Quality of
Business Process Models. In Proceedings of 1st International
Workshop on Empirical Requirements Engineering (EmpiRE
2011 co-located with RE 2011), pages 61-68. IEEE Digital
Library, 2011.

G. Reggio, M. Leotta, F. Ricca, and E. Astesiano. Choosing
the right style for modelling the business process with the
UML: Complete version. Technical Report DISI-TR-12-02,
DISI - University of Genova, Italy, April 2012.

M. Rychly and P. Weiss. Modeling of service oriented
architecture: From business process to service realisation.
In Proceedings of 3rd International Working Conference on
Evaluation of Novel Approaches to Software Engineering
(ENASE 2008), pages 140-146. Institute for Systems and
Technologies of Information, Control and Communication,
2008.

L. Sanchez-Gonzilez, F. Ruiz, F. Garcia, and J. Cardoso.
Towards Thresholds of Control Flow Complexity Measures
for BPMN Models. In Proceedings of SAC 2011, pages 1445—
1450, New York, NY, USA. ACM.

H. M. Sneed. Migrating to Web services: A research frame-
work. In Proceedings of Workshop on Service-Oriented Ar-
chitecture Maintenance (SOAM 2007 co-located with CSMR
2007), 2007.

