
Copyright: 

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for 

your personal use. Not for redistribution. The definitive version was published in Proceedings of 1st 

Workshop on the Analysis of Model Transformations (AMT 2012). 

http://dx.doi.org/10.1145/2432497.2432501 

Early Experiences on Model Transformation Testing 

Alessandro Tiso, Gianna Reggio, Maurizio Leotta 

 

 

Abstract: 

Model transformations are the primary artifacts in Model Driven Development and like 

any other piece of software, must be designed, implemented and tested. Since there are 

not standard techniques and methods for testing model transformations (especially in the 

case of model-to-text transformations) we propose an approach to test them. We have 

used this approach to test a model transformation designed and built using our method for 

developing model transformations, this transformation maps profiled UML design models 

into Java desktop applications. We have also created a set of tools to automate the 

execution of tests on this transformation. 

 

 

Digital Object Identifier (DOI): 

http://dx.doi.org/10.1145/2432497.2432501 



Early Experiences on Model Transformation Testing

Alessandro Tiso
alessandro.tiso@unige.it

Gianna Reggio
gianna.reggio@unige.it

Maurizio Leotta
maurizio.leotta@unige.it

Dipartimento interscuola di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS)
Università di Genova, Italy

ABSTRACT
Model transformations are the primary artifacts in Model
Driven Development and like any other piece of software,
must be designed, implemented and tested. Since there
are not standard techniques and methods for testing model
transformations (especially in the case of model-to-text trans-
formations) we propose an approach to test them. We have
used this approach to test a model transformation designed
and built using our method for developing model trans-
formations, this transformation maps profiled UML design
models into Java desktop applications. We have also cre-
ated a set of tools to automate the execution of tests on this
transformation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Design

Keywords
Model Driven Development, Model Transformation Testing,
UML

1. INTRODUCTION
Model transformations are the heart and the soul [11] of

Model Driven Development (MDD) and must be considered
as primary artifacts when applying MDD techniques. Like
any other piece of software, model transformations must be
designed, implemented and tested. Testing model transfor-
mations is a problem more complex than code testing [2].
There are several factors to be considered when evaluating
the complexity of this problem, in this paper we covered the
following:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AMT ’12, October 01-05, 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1803-7/12/10 ...$15.00.

• there are a lot of model transformation languages, some
are general purpose languages (e.g., Java or C++),
others are designed for specific tasks such as Model-to-
Model (M2M) transformations (e.g., ATL, QVT, Ker-
meta) and Model-to-Code (M2C) translations (e.g.,
Acceleo, Jet, XPand), the latter can be considered as a
special case of model-to-text transformation language.
This heterogeneity must be taken into account espe-
cially in the selection (or definition) of white-box test-
ing technique [3].

• building a good set of models to be used as input of
model transformations for the purpose of the transfor-
mation testing is a difficult problem. For example, if
the input models are instances of a particular meta-
model (e.g., UML, profiled UML) that can be con-
strained by a set of well-formedness rules, then they
should contain at least one instance for each class of
the meta-model [2]. Clearly, this is not viable, but it is
possible to build automatically or manually a set of in-
put models, as small as possible, but at the same time
being a good representative of the whole input space;
these models must be built following some criteria that
are still the subject of studies.

• also the definition of oracle functions for model trans-
formations is difficult due to the complex nature of
models. When talking about oracle functions for model
transformation tests we must analyze the validity of
produced model; this require to analyze syntactic and
semantic properties of the output [10].

• writing test cases, managing input and output mod-
els, meta-models and model transformation programs
require a set of support tools, especially in the case
of a chain of transformations, where various model
transformation languages may be used. All these tools
should be integrated as much as possible, minimizing
interoperability problems.

There are other two factors to consider, that we have not
addressed in this work. The former is that to test model
transformations we need a specification of what the transfor-
mation has to do; in general writing specification for model
transformations is not easy, and often they are described
only in very informal terms. The latter is that input and
output of model transformations are models, that are com-
plex data structure [3]. They are often large and require
the use of (sometimes complex) tools for their production.
They are difficult to be produced by automatic generation,



because they must be conform to a specific meta-model and
are constrained by well-formedness rules. Finally, manually
producing these models is a time consuming task.

Currently there are no standards or well established pro-
posals available for transformation testing, especially in the
case of Model-to-Code transformations and transformation
chains. This can be due to the fact that it is a difficult
problem to solve.

In this paper, we report on our early experience in test-
ing model transformations that are built following a general
method for obtaining structured text artifacts (i.e., a set of
text files arranged in a specific hierarchies of folders), start-
ing from a UML model, and we sketch an initial proposal
for testing model transformations in this specific case.

In Sect. 2, we briefly report our method for producing
model transformations, then in Sect. 3 we introduce a spe-
cific transformation, developed following our method, that
will be used as case study for transformation testing. Sect. 4
describes our approach to testing transformations. Sect. 5
presents the test suite for the case study, and in Sect. 6 we
show how the techniques used for testing the transforma-
tions may be adapted to test the input models. Related
work and conclusions are in Sect. 7 and 8 respectively.

2. OUR METHOD FOR DEVELOPING
MODEL TRANSFORMATIONS

Here we briefly sketches our Method for Developing Model
Transformations (shortly MeDMT). MeDMT specifies:

• how to define the model transformation requirements,
by giving:

– the domain of the transformation, as a specific
class of well-formed UML models written using
a specific profile, and conform to a given set of
well-formedness rules;

– the co-domain of the transformation, as struc-
tured textual artifacts, i.e., a set of text files or-
ganized in a specific folder hierarchy (e.g., code
and configuration files for an application or a set
of OWL files defining an ontology);

– the informal definition of the correspondence be-
tween domain and co-domain elements;

• how to design the model transformation, following a
specific architecture (see Figure 1) and using a specific
notation based on clauses that show how fragments
of the domains matching some structural patterns are
transformed into elements of the co-domain.

Figure 1 shows the transformation chain used by our meth-
od, mapping input UML models into structured textual ar-
tifacts. First, a UML Input Model is checked to verify that it
satisfies the well-formedness constraints defining the trans-
formation domain, by means of a Model-to-Model transfor-
mation (M2M Conformity Check) into an Error & Warning
Model. If the Error & Warning Model does not contain er-
rors, then the UML Input Model is re-factorized by a Model-
to-Model transformation (M2M Refactoring) to simplify it as
much as possible, obtaining a Canonical Model; this step sim-
plifies the creation of the subsequent Model-to-Text trans-
formation (M2T Text Generation). Finally, the Structured

Figure 1: MeDMT Transformation Architecture

Textual Artifacts are obtained. The transformation under
test is the composition of the M2M Refactoring and M2T
Text Generation transformations.

In the context of the Eclipse Modeling Project, that of-
fers a complete tools infrastructure for MDD, we chose: (1)
Eclipse ATL1 as Model-to-Model transformation language,
(2) Eclipse Acceleo2 as Model-to-Text transformation lan-
guage and (3) Eclipse OCL as model query language. Eclipse
ATL is a hybrid (i.e., provide a mix of declarative and imper-
ative constructs) Model-to-Model transformation language
and is accompanied by a set of tools like the ATL IDE (an
editor with code completion, builder and debugger). Eclipse
Acceleo is a pragmatic implementation of the OMG MOF
Model-to-Text language standard, and it comes with a set of
Eclipse plug-in for editing, debugging and launching Model-
to-Text transformations. Both ATL and Acceleo allow a
good modularity; this feature is very useful to accomplish
the task of finding the parts of the transformation that are
probably not correct during the testing procedure.

Having chosen the Eclipse Platform we have also the avail-
ability of an IDE for Java and a set of plug-in to manage
effectively the other technologies used in the target project.

3. CASE STUDY
The selected case study is an application of the MeDMT

method, which allows to generate desktop Java applications
starting from a UML models representing a detailed de-
sign of such applications. The considered design models are

1www.eclipse.org/atl/
2www.eclipse.org/acceleo/



made following a precise well-founded method [1]. The do-
main and co-domain of the case-study transformation are
explained in the following.

The domain consists of UML models created following [1]
using a profile that provides a set of stereotypes to identify
the entities that compose the application, such as:

�context� active classes representing entities external to
the application interacting with it;

�boundary� active classes representing entities taking care
of the interaction of the application with some context
entities;

�executor� active classes representing entities performing
some core application activities;

�store� passive classes representing entities containing per-
sistent data.

Classes can have associated invariants, and operations can
have pre-conditions and post-conditions, all expressed using
OCL. Any operation has an associated method which is ex-
pressed using the UML action language (since there is not
a standard concrete syntax for the UML action language,
for simplicity, we use a Java like notation for it). The be-
haviour of active classes is represented by state machines.
These models should adhere to a rich set of well-formedness
constraints, helping to avoid the most common design errors.

The co-domain consists of Java desktop applications built
using the Spring3 framework as glue-framework and JPA4

with Hibernate5 as persistence provider, in the Data Ac-
cess Layer. The model transformation generates a Maven6

project containing all the needed source code and configura-
tion files (e.g., the Spring application contexts and the JPA
configuration files). We chose this technology stack for the
co-domain because we wanted to have a realistic case study.
This choice led several benefits due to the advanced features
of the technology stack components, but at the same time
some technological problems in the implementation of the
Model-to-Text; for space reasons we do not report on them
here. We have also satisfied a non-functional requirement
that consists in having all the produced code readable; in-
deed, our target code appears to be very similar to the one
written by a developer.

This transformation was developed during the last year of
a three-year PhD course as an application of the MeDMT by
one of the authors and it is the object of our testing. The
Model-to-Model transformation (M2M Refactoring) specified
in Eclipse ATL is composed by 6 rules and 11 helpers whereas
the subsequent Model-to-Text transformation (M2T Text Gen-
eration) implemented using Acceleo is composed by 61 mod-
ules, 403 templates, 73 queries, and 4 Java classes. It can
be classified as a prototype developed using a “real” MDE
setup (i.e., using technologies and tools actually used in the
industry).

3www.springsource.org/
4www.oracle.com/technetwork/articles/javaee/jpa-
137156.html
5www.hibernate.org/
6maven.apache.org/

4. MODEL TRANSFORMATION TESTING:
OUR APPROACH

4.1 Kind of Testing
We consider two main approaches to model transforma-

tion testing:

checking static properties of the transformation target
(static case) thus assess the presence of specific ele-
ments in the target; for instance in the case of Model-
to-Text transformation, it is possible to check the pres-
ence in the output of specific strings. This is a kind
of white-box testing, indeed we must know the inter-
nal structure of the transformation to know which el-
ements search in the target (e.g., if we have to check
that some expressions have been correctly transformed
in Java, we have to know if the transformation adds
extra round parenthesis or if the this are omitted).

analyzing the execution of the transformation target (dy-
namic case): this can be performed when the target of
the transformation is code (so compilable/executable).
A test case for the transformation consists of a pair
formed by an input model (i.e., a UML Model) and a
test case on the target code (e.g., a JUnit test case for
Java) that is produced with the help of state-of-the-art
techniques in the field of the co-domain of the transfor-
mation. A minimal test case just consists in compiling
and running the result of the transformation. To try to
automatize the generation and the execution of these
kind of tests it is possible to define the code test ab-
stractly in the source model and to extend the trans-
formation itself to convert it in a standard test case
on the target; for example if the transformation goes
from UML models into Java, we can add some parts
in the source model and extend the transformation to
map them into JUnit tests. This is a kind of black-box
testing, at least for the phase of the test cases concep-
tion, indeed only the semantics of the transformation
and of the target code is considered (e.g., we can ask if
the transformation of an expression E will be greater
than 0 in the target, just adding in the source model
E > 0 ).

4.2 Test Models and Oracle Functions
In both approaches (static and dynamic cases) we must

select input models and oracle functions to be used during
the tests. The idea is to build relatively small input models
each one used to test a particular kind of possible domain
elements instead of large models containing many different
elements. For each stereotype in the UML profile used to
build the input models there should be at least one test
model containing it, and each pattern used in the clauses
defining the transformation design should be instantiated
in at least one test model. Finally, at least one real-size
complete model should be used.

Checking Static Properties of the Target.
In the static case, the oracle function analyzes the tar-

get obtained by a run of the model transformation, assert-
ing the presence of snippets determined analyzing the input
model. The kind of snippets that must be checked in the
target model depends on the patterns specified in the model



transformation design, e.g., if in the design there is a clause
that states that for each class in the model there must be a
class with the same name in the target code, then the oracle
function must check the presence of that class.

Analyzing the Execution of the Target.
In the dynamic case we exploit the fact that target pro-

duced by the model transformation is compilable and exe-
cutable. The simplest test is to check if the target code may
be compiled. If compilation fails, then we have an indica-
tion that the model transformation is incorrect. The model
transformation developer can find the erroneous part of the
Model transformation with the help of the errors reported
by the compiler and the design of the transformation itself.

Another kind of testing is produced inserting in the source
model test classes and test operations, that drive the gen-
eration of executable test cases in the target code. Tests
can be written using specific stereotypes for test classes and
test operations, and drawing named associations between
the test class and the class under test. Moreover, we can
specify post-conditions on test operations indicating what
action to take during the build of the generated code, de-
pending if the post-conditions are satisfied or not. More in
general, to test semantic properties of the transformation we
can write, in the input model, operations whose behaviour
is known and test operation to verify that the behaviour is
the expected one.

If the execution of the tests generated in the target model
fails, the errors can be in the transformation, in the source
model or in both. We can consider that in the case of very
simple behaviour, qualitatively speaking, the probability of
erroneous definition of the model is lower than the proba-
bility of erroneous definition of the transformation, thus we
consider the transformation incorrect also if in this case we
cannot totally exclude errors in the model.

In case of success, we gain in confidence on the correctness
of the transformation, except in the case of two errors, one
in the source model and the other in the transformation,
that compensate each other, but this can be considered a
really rare case, also because the errors in the two fields are
of a very different nature.

Taking advantage of the modularity of the model transfor-
mations and the way in which the input models are built, in
the case of failure of a specific test, we can know, with a dis-
crete approximation, which modules of the transformation
are probably not correct.

Regression Tests.
A very simple oracle functions is the one that compares

the output of a specific run of the model transformation
with the expected output, and in case of textual targets the
comparison is made without considering white spaces and
line breaks.

The expected output is generated by the transformation
itself and its correctness is assessed by the transformation
developer (possibly with the help of available tools, depend-
ing on the nature of the produced artifacts); she/he corrects
the transformation until reaching a satisfactory result (i.e.,
a correct output). This process is feasible because the ex-
pected output is human readable.

Since each test model is representative of a particular sub-
set of the domain of the transformation, during each run of
the transformation only a subset of the modules that com-

pose it are activated. Moreover, it must produce the same
project (not only semantically equivalent, but syntactically
the same) for the same test model; this simplifies the com-
parison between the expected project and the one output of
the transformation run.

Regression testing is useful in the case in which new fea-
tures are added to model transformation or it is refactorized;
in the other cases new versions of the expected projects are
required.

5. TEST SUITE FOR THE CASE STUDY
All the stereotypes that identify the entities composing

the applications and their features appear at least in one
model in the set of models used for testing the transforma-
tion, as well as all the main patterns for the input models
appearing in the clauses in the specification of the design of
the model transformation itself. Each test model contains
mainly elements with a specific class stereotype (see Section
3), so we have:

datatypes test model containing mainly �datatype�;

executors test model containing mainly classes stereo-
typed with �executor�;

boundaries test model containing mainly classes stereo-
typed with �boundary�;

stores test model containing mainly classes stereotyped
with �store�.

We have also a test model in which all those stereotypes
appear, that represents the design of a small Java desktop
application. This model contains 12 classes, 3 datatypes, 7
state machines and 90 operations.

Table 1 shows a summary of the complete test suite for the
case study, where we can see that all the small test models
are used for static case, dynamic case and regression test,
instead the small sized application is not used for regression
testing.

Figure 2 shows a fragment of the store test model that con-
tains mainly classes stereotyped with �store�, some parts
of this model will be used by the transformation to generate
some tests on the target of the transformation itself.

Classes stereotyped by �store� are transformed in a set of
Java classes and configuration files that manage the persis-
tence of objects of these classes in a database. For instance,
we can test that the transformation works as expected writ-
ing (1) an operation in the input model whose method trig-
gers the creation of one or more row in the database tables
and (2) a post-condition to verify that expected data are ac-
tually in the database (using for example a query operation
of the same stereotyped class).

Test Input Model Dynamic Static Regression
Case Case Tests

Data type X X X
Executor X X X
Boundary X X X
Store X X X
small sized application X X –

Table 1: Test Suite



Figure 2: Test On Model

The class TestStoreClass stereotyped by �testClass� con-
tains one operation stereotyped by �testOperation� (see Fig-
ure 2). This operation has a method (shown on the class di-
agram in the note attached to the operation) that specifies
the behavior of the operation. The operation has one post-
condition, specified by an OCL expression (also this one is
shown in the note attached to the operation).

During the transformation, if the test generation parame-
ter is enabled, the class stereotyped by �testClass� is trans-
lated into one JUnit test case, and the method associated
with each test operation is translated into one JUnit test
method. The OCL is compiled in Java language (during the
same run of the transformation that generates all the code),
and then used to evaluate the post-condition in the JUnit
test method. During the build of the project the JUnit test
is activated, a fresh instance of an in-memory database is
created and configured with scripts automatically derived
from the model, and finally the JUnit test is executed.

Moreover, it is possible to specify in the model if the
build of the generated Maven project must fail in case of
test failed, or must produce in any case (test failed or not)
the artifacts corresponding to the model.

Regarding the static case, if the test generation parameter
is enabled, then the transformation can use some elements of
the input model (e.g., name of classes, properties of classes
etc.) to define parameters for a static analysis tool, and
write them in the configuration files (parameters of custom
check rules) of the Maven project generated by the model
transformation under test. These parameters are then used
by custom rules of the static analysis tool to verify that the
expected snippets are present in the generated code or if
there are elements not expected in the generated project.
A set of report files are generated during the build of the
Maven project, showing the results of applying these rules.

For example, if we want to check the presence of some
attributes in a class we can specify the following property:

<property name="attributes"

value="Airplane#name,Airplane#engineNumber" />

This property is related to a specific custom rule written
for the static analysis tool, that is able to verify the presence
of the two attributes, name and engineNumber, in the class
Airplane. The rule is then activated during the Maven build
and produces files that report the results of its application.
This is only a simple example of the possibilities given by

the use of a static analysis tools for checking the presence of
code snippets in the target project.

Testing execution is automated exploiting the features of
Maven. All the tests generated by the model transformation
consist of Java code and configuration files placed both in
the same project in which the application code is generated,
but in a separate folder, that Maven recognizes as the tests
container. The developer has only to activate the build pro-
cess. During the build process tests are executed and report
files are produced.

6. TESTING OF THE INPUT MODELS
The techniques used in the dynamic case to test the trans-

formation correctness by means of tests on the transforma-
tion target may be used also as a way to perform some tests
on the input models. Once that the confidence on the cor-
rectness of the transformation has reached an acceptable
level, we can use test classes and test operations to define
tests on the model elements (UML classes with their oper-
ation and, in case of active classes, the behaviour defined
by means of state machines), using constraints, as class in-
variants, pre-conditions and post-conditions for operations.
The extended transformation will transform them into tests
on the target. The failure of such tests “should” denote a
problem in the model, since we are now assuming that the
transformation is correct. This goes in the direction of us-
ing only models also for what concern testing. A user of the
transformation may completely forget about the structure
and the technology used in the target of the transformation,
and concentrate herself/himself on producing and checking
the input models, thus increasing the level of abstraction
used in the development of software applications, as claimed
by MDD.

7. RELATED WORK
Esther Guerra in her work [6] considers Model-to-Model

transformations and starting from a formal specification writ-
ten using her own specification language can derive oracle
functions and generate a set of input test models that can
be used to test the model transformation using transML [7]
a family of modelling languages proposed by the same au-
thor and others. In our case, the input models dedicated to
test and the oracle functions are not automatically gener-
ated, but we are driven also by a specification (we use the



design of the model transformation), though not formal, to
generate input test models and oracle functions.

Lin et al. in their work [9] present a framework for the con-
struction of test cases, execution of test cases, comparison
of the output model with an expected one, and visualization
of differences. We also, during regression testing, compare
output generated by the model transformation with an ex-
pected one, but in our case output is a Java project plus
configuration files.

Giner and Pelechano in [5] show the definition of a test-
driven method for developing Model-to-Model transforma-
tions. Applying this method, at each development cycle the
transformation is extended to cover a new test case, then
it is validated according to the specification expressed us-
ing transformation examples as test-cases (in a formal way).
The specification is used to generate the input model, that is
transformed applying the model transformation under test
obtaining the output model. The result is then compared
with the expected one. There are many differences and sim-
ilarities with our approach. Differences are: (i) first this
method is applied in Model-to-Model transformation (while
our is Model-to-Text); (ii) second our approach is not test
driven. There are similarities in the way they capture the
requirement of the transformation (using transformation ex-
amples as test cases) and the way we design the transforma-
tion (using patterns).

Ciancone et al. in their work [4] present an approach for
unit testing of QVT-Operational7 transformations using a
white-box way. Using this approach the transformation de-
veloper is able to define and execute unit tests using the
same QVT-Operational language used for the definition of
the transformation. We have two languages involved in our
transformation (Acceleo, ATL); considering only the Model-
to-Text transformation, the language used, Acceleo, has only
the possibility to write the transformation and it is not able
to define the test cases at the time in which the transforma-
tion is developed.

8. CONCLUSIONS AND FUTURE WORK
This work presents a preliminary version of an approach

for testing model transformations, that has been applied in
practice on a model transformation (our case study) de-
signed and built using our method for developing model
transformations. We have followed the approach for test-
ing the transformation, that it is able to generate desktop
applications from precise UML design models [1]. Moreover,
it has led us to deal with the tools and the frameworks that
support the tasks that must be accomplished to write and
test model transformations. We can conclude that simple
approaches and effective support tools are very important
to develop reliable model transformations in effective way.

In the future, we intend to generalize and formalize this
approach adding to MeDMT (our method for developing
transformation from UML models into structured textual
artifact) detailed guidelines for building (1) input test mod-
els and (2) test cases on the result of the transformation,
starting from the design of the transformation itself. We
plan to add the automatic triggering of the Maven build
process after the target project generation. Moreover, we
plan to execute some experiments to assess the effectiveness
of our approaches.

7a language designed for writing transformations

Finally, we plan to use the MeDMT in other case studies,
for instance to define a Model-to-Text transformation from
UML models, representing detailed designs of business pro-
cesses [8], to BPEL, and then to investigate how to apply our
model transformation testing approach in these contexts.

9. REFERENCES
[1] E. Astesiano and G. Reggio. Towards a well-founded

UML-based development method. In Proceedings of
1st International Conference on Software Engineering
and Formal Methods (SEFM 2003), pages 102–115.
IEEE Computer Society, 2003.

[2] B. Baudry, T. Dinh-trong, J.-M. Mottu, D. Simmonds,
R. France, S. Ghosh, F. Fleurey, and Y. L. Traon.
Model transformation testing challenges. In
Proceedings of IMDT workshop in conjunction with
ECMDA 2006, 2006.

[3] B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L.
Traon, and J.-M. Mottu. Barriers to systematic model
transformation testing. Communications of the ACM,
53(6):139–143, 2010.

[4] A. Ciancone, A. Filieri, and R. Mirandola. MANTra:
Towards model transformation testing. In Proceedings
of 7th International Conference on the Quality of
Information and Communications Technology
(QUATIC 2010), pages 97–105. IEEE Computer
Society, 2010.

[5] P. Giner and V. Pelechano. Test-driven development
of model transformations. In A. Schürr and B. Selic,
editors, MoDELS, volume 5795 of Lecture Notes in
Computer Science, pages 748–752. Springer, 2009.

[6] E. Guerra. Specification-driven test generation for
model transformations. In Z. Hu and J. de Lara,
editors, ICMT, volume 7307 of Lecture Notes in
Computer Science, pages 40–55. Springer, 2012.

[7] E. Guerra, J. Lara, D. Kolovos, R. Paige, and
O. Santos. Engineering model transformations with
transML. Software & Systems Modeling, pages 1–23,
2011.

[8] M. Leotta, G. Reggio, F. Ricca, and E. Astesiano.
Towards a Lightweight Model Driven Method for
Developing SOA Systems Using Existing Assets. In
Proceedings of 14th International Symposium on Web
Systems Evolution (WSE 2012), pages 51–60. IEEE,
2012.

[9] Y. Lin, J. Zhang, and J. Gray. A testing framework
for model transformations. In S. Beydeda, M. Book,
and V. Gruhn, editors, Model-Driven Software
Development, pages 219–236. Springer, 2005.

[10] J.-M. Mottu, B. Baudry, and Y. L. Traon. Model
transformation testing: oracle issue. In Proceedings of
1st International Conference on Software Testing
Verification and Validation Workshop (ICSTW 2008),
pages 105–112. IEEE Computer Society, 2008.

[11] S. Sendall and W. Kozaczynski. Model transformation:
The heart and soul of model-driven software
development. IEEE Software, 20(5):42–45, 2003.


