
Copyright:

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Improving Test Suites Maintainability with the

Page Object Pattern: An Industrial Case Study

Maurizio Leotta, Diego Clerissi, Filippo Ricca, Cristiano Spadaro

Abstract:

The page object pattern is used in the context of web testing for abstracting the application's

web pages in order to reduce the coupling between test cases and application under test. This

paper reports on an industrial case study in a small Italian company (eXact learning solutions

S.p.A.) investigating the potential benefits of adopting the page object pattern to improve the

maintainability of Selenium WebDriver test cases. After a maintenance/evolution activity

performed on the application under test, we compared two equivalent test suites, one built

using the page object pattern and one without it. The results of our case study indicate a

strong reduction in terms of time required (by a factor of about three) and number of

modified LOCs (by a factor of about eight) to repair the test suite when the page object

pattern is used.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/ICSTW.2013.19

Improving Test Suites Maintainability with the
Page Object Pattern: An Industrial Case Study

Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1, Cristiano Spadaro2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 eXact learning solutions S.p.A., Sestri Levante, Italy

maurizio.leotta@unige.it, diego.clerissi@gmail.com, filippo.ricca@unige.it, c.spadaro@exactls.com

Abstract—The page object pattern is used in the context of
web testing for abstracting the application’s web pages in order
to reduce the coupling between test cases and application under
test. This paper reports on an industrial case study in a small
Italian company (eXact learning solutions S.p.A.) investigating the
potential benefits of adopting the page object pattern to improve
the maintainability of Selenium WebDriver test cases. After
a maintenance/evolution activity performed on the application
under test, we compared two equivalent test suites, one built
using the page object pattern and one without it. The results
of our case study indicate a strong reduction in terms of time
required (by a factor of about three) and number of modified
LOCs (by a factor of about eight) to repair the test suite when
the page object pattern is used.

Keywords—Web Application Testing, Test Automation, Selenium
WebDriver, Test Suite Maintainability, Page Object Pattern.

I. INTRODUCTION

The importance of test automation in web engineering
is evident considering the number of companies investing
in automated testing frameworks and tools nowadays. Test
automation is considered crucial for the success of large web
applications: it saves a lot of time in testing and helps to
release web applications with fewer defects [1], [4]. The main
advantage of test automation comes from being able to quickly
run a set of tests after some changes have been made to a web
application.

Selenium1 is one of the most popular suites for automating
web application testing and it is employed in many industrial
projects. Essentially, this suite is composed of two tools:
Selenium IDE2 and Selenium WebDriver3. The former tool
is implemented as Firefox extension and provides recording
and replay capabilities (i.e., Capture/Playback [5]). In practice,
Selenium IDE records the user actions that can be transformed
into test cases by adding some assertions. Finally, test cases
can be re-executed inside the Firefox browser. On the contrary,
the latter tool provides a more comprehensive programming
interface used to control a browser. Test cases are manually
implemented in a programming language (e.g., Java) integrat-
ing Selenium WebDriver commands with JUnit or TestNG
assertions.

This paper reports empirical observations and the chal-
lenges of a mixed test team of two academic and industry
workers new to test automation and Selenium. The work was

1http://seleniumhq.org/
2http://seleniumhq.org/projects/ide/
3http://seleniumhq.org/projects/webdriver/

performed in close cooperation with the Software Engineering
research group at Genoa University4. This case study started
as a thesis project.

During this case study, the objectives of our industrial part-
ner5 were: (i) selecting a tool for test automation, (ii) imple-
menting some automated test cases for a Web-based Learning
Content Management System named eXact learning LCMS
(one of the products they produce) and, (iii) starting to ex-
periment and quantify potential benefits of the final adopted
solution.

Finally, the test team resorted to Selenium WebDriver.
They produced a test suite for a portion of eXact learning
LCMS composed of 25 test cases written using the page object
pattern6. This pattern is becoming popular in test automation
for enhancing the maintainability of test cases.

Although the project involved the testing of specific soft-
ware for the Learning Content Management domain, the expe-
rience is likely to be applicable across many commercial and
government domains and we believe that the obtained results
could also be generalized to other types of web applications,
even if further experimentation is needed. To the best of our
knowledge, this is the first work trying to quantify the actual
benefits of the page object pattern adoption in an industrial
context.

The remainder of this paper describes the case study and
its outcomes, and draws some conclusions on the benefits of
using Selenium WebDriver in conjunction with the page object
pattern. The paper is structured as follows: Sect. II details the
case study; Sect. III describes the page object pattern; Sect. IV
describes the realignment7 procedure; Sect. V sketches the
outcomes of the case study and discusses them. Sect. VI reports
related work. Finally, Sect. VII concludes the paper.

II. THE CASE STUDY

The Web Application Under Test (WAUT) is the eXact
learning LCMS web application. eXact learning LCMS is
mainly a Learning Content Management System (LCMS) for
eLearning content production that contains also a Learning
Management System (LMS) for eLearning content delivery.
The product is a web application developed in ASP.NET that
relies on a Microsoft SQL Server database. It is designed with
a multi-tier approach consisting of presentation, business and

4http://softeng.disi.unige.it/
5eXact learning solutions S.p.A. – http://www.exact-learning.com/en/
6http://code.google.com/p/selenium/wiki/PageObjects
7In this work, we use realign as synonym of repair.

data access layers. The development started about 6 years ago,
with a development team composed by 3-4 software analysts
and developers. eXact learning LCMS is currently composed
by about 700.000 lines of code, 200 ASP.NET web pages, and
has been developed using Visual Studio IDE.

As a first step, the test team selected a portion of the
eXact learning LCMS web application to test with Selenium.
They chose the DURP portion of eXact learning LCMS,
i.e., the portion that manages the Domains, Users, Roles and
Permissions that can be defined in the application. The test
team opted for that portion because it is crucial for an LCMS
application and because it is quite common for web-based
applications.

Then, the test team started to produce some test cases
using the recording capability of Selenium IDE. Quickly, the
test team discovered several limitations in its usage. Natively,
Selenium IDE does not provide some useful features, such as:
conditional statements, loops, logging functionality, exception
handling, and parameterized (a.k.a. data-driven) test cases8.

Thus, the test team moved to Selenium WebDriver, but
the problem became how to develop the test cases quickly,
since WebDriver does not provide mechanisms to automat-
ically record the test case. Thus, the test team decided to
use Selenium IDE to produce a skeleton of the test cases
and then they manually refined/refactored the exported Java
scripts adding assertions, conditions and loops9. Moreover,
when useful, the test team manually transformed the produced
test cases into parameterized test cases. The result of this
work was a Selenium WebDriver test suite (that we named
PatternNO) for the DURP portion of eXact learning LCMS
composed of 25 test cases and 2891 LOCs10.

Each test case of the test suite performs several steps
such as navigating web pages, clicking links, filling forms
and finally evaluating a set of assertions. As an example,
we describe the AddUserTest test case. This test case has
been developed to test the functionality that allows, only to
certain roles (e.g., administrator), to add new users to the
application. The test case opens the LoginPage, logs in with
an administrator account (login and pwd are recovered from a
CSV file) and navigates the HomePage, AdministrationPage,
and UserMngPage to reach the AddNewUserPage. Then, the
test case fills the form with the user data and submits it. If
everything is ok, the eXact learning LCMS application shows
a summary page (called UserDetailsPage) listing the inserted
user data. At this point, the test case locates the web page
elements displaying the data inserted (e.g., username, name,
surname, email) and verifies the correctness of these values.

By using this approach (i.e., combining Selenium Web-
Driver+IDE) the test team quickly produced the test cases but
their quality was not sufficiently good. The produced Selenium
test suite had a lot of duplicated code and the test cases were
extremely coupled with the structure of the web pages. Surfing
the Web, the test team discovered the page object pattern
used precisely for addressing this kind of problems. Thus,

8Parameterized test cases are test cases executed several times, each time
passing them different arguments (i.e., input and expected values).

9Note that the replay feature of Selenium IDE was not used.
10LOCs have been measured as the number of source code lines (without

imports, comment lines or empty lines) formatted following the Sun’s Java
Code Conventions. http://java.sun.com/docs/codeconv/index.html

they produced a new test suite (called PatternYES) completely
equivalent to PatternNO but using the page object pattern. The
production of the PatternYES test suite was more challenging
and time-consuming with respect to the production of the
PatternNO test suite11 because it was completely conducted
manually. The new test suite is composed of 25 test cases and
19 page objects for a total of 3320 LOCs (1720 for the test
cases and 1600 for the page objects).

When each test suite is executed, 336 test case instances
are run (since each test case is parameterized with several
different input/expected values previously stored in a CSV
file). The complete execution of each test suite takes about 3
hours and half employing a computer equipped with an Intel
Core i5 dual-core processor (3.1 GHz), 8 GB RAM and a fast
(100 Mb/s) network connection to the servers hosting the eXact
learning LCMS application. To reach the best performances,
the test team chose to locate the web page elements using
their ID values, since, for localization purposes, this is the most
efficient solution12, and XPath expressions when ID values are
not available.

Finally, we compared the two test suites (PatternNO and
PatternYES) trying to answer to the following research ques-
tion:

Does the adoption of the page object pattern reduce the effort
needed to repair a Selenium test suite? and if yes, how much?

We measured the realignment effort in terms of time
(minutes) and number of line of code to change for both the
test suites.

III. THE PAGE OBJECT PATTERN

The page object pattern is used to model the web pages
involved in the test process as objects, employing the same
programming language used to write the test cases. In this way,
the functionalities offered by a web page become “services”
(i.e., methods) offered by the corresponding page object and
can be easily called within any test case. Thus, all the details of
the web page are encapsulated inside the page object. Adopting
the page object pattern allows the test developer to work on a
higher level of abstraction (clearly, except when it is necessary
to develop the page objects).

In what follows, we show how it is possible to test a
simple web application employing Selenium WebDriver with
and without the page object pattern. Imagine having to test
a portion of a web application that allows to book flights. In
a very simplified case, we can have two pages like the ones

11Unfortunately the test team had not noted down the exact times.
12http://seleniumhq.org/docs/03 webdriver.jsp

<form name="input" action="departingFlights.asp" method="get">
 Depart From: <input type="text" id="orig" name="origAirport">

 Arrive In: <input type="text" id="dest" name="destAirport">

 Depart Date: <input type="text" id="date" name="date">

 <input type="submit" id="submit" value="Find Flights">
</form>

Depart From : Milan
Arrive In: Paris
Depart Date: 20-06-2013

Find Flights

Fig. 1. searchFlights.asp – Page and Source (Version 1)

<table id="results" border="1"><tr>
 <td colspan="2">Departure</td>
 <td colspan="2">Arrival</td>
 <td>Prices</td>
 </tr><tr>
 <td id="o1">Milan</td><td>08:30</td>
 <td id="d1">Paris</td><td>09:45</td><td>89€</td>
 </tr><tr>
 <td id="o2">Milan</td><td>09:30</td>
 <td id="d2">Paris</td><td>10:45</td><td>79€</td>
 </tr>
</table>

Departure Arrival Prices

Milan 08:30 Paris 09:45 89€

Milan 09:30 Paris 10:45 79€

Fig. 2. departingFlights.asp – Page and Source

shown in Fig. 1 (called searchFlights.asp) and Fig. 2 (called
departingFlights.asp). The first page allows the user to enter
departure, destination and date of a flight. This page can be
implemented in HTML as shown in Fig. 1 (for the sake of
simplicity, we have omitted all the tags that are not relevant
for the comprehension of the example). Fig. 2 shows the
dynamically generated page containing all the found flights.

Now, let us see how it is possible to test the flight
booking application. The following Java code has been slightly
simplified to make the description more concise avoiding to
report a lot of minor details. Without the page object pattern
we can code a JUnit test class provided of test methods
like the ones reported in Fig. 3 (i.e., testEuropeanFlight() and
testNullFlight()). More in detail, we can see that in each test
method: first, a WebDriver of type FirefoxDriver is created
allowing to control the Firefox browser as a real user does13;
second, the WebDriver (i.e., the browser) opens the specified
URL; third, the input fields are filled and the submission
button is clicked (note that in this example the web elements
are located using the values of their IDs); finally, when the
submission button is clicked the WebDriver goes in another
page (i.e., departingFlights.asp) and the assertions can be
checked.

As it is possible to see in Fig. 3, the code implementing the
test methods is very coupled to the web pages’ implementation.
For instance, in the test cases code, IDs are used to identify the
various input forms and submission buttons. The adoption of
the page object pattern allows to insert a level of abstraction

13Selenium WebDriver allows to employ also several other browsers.

public void testEuropeanFlight() {
 WebDriver driver = new FirefoxDriver();
 // we start from the 'searchFlights.asp' page
 driver.get("http://www.....com/searchFlights.asp");
 driver.findElement(By.id("orig")).sendKeys("Milan");
 driver.findElement(By.id("dest")).sendKeys("Paris");
 driver.findElement(By.id("date")).sendKeys("20-06-2013");
 driver.findElement(By.id("submit")).submit();
 // we are in the 'departingFlights.asp' page
 for each flight X returned, X = [1..n] { //(o1,d1)...(on,dn)
 assertEquals("Milan", driver.findElement(By.id("oX")).getText());
 assertEquals("Paris", driver.findElement(By.id("dX")).getText());
 }
 driver.close();
}

public void testNullFlight() {
 WebDriver driver = new FirefoxDriver();
 driver.get("http://www.....com/searchFlights.asp");
 driver.findElement(By.id("orig")).sendKeys("Milan");
 driver.findElement(By.id("dest")).sendKeys("Milan");
 driver.findElement(By.id("date")).sendKeys("20-06-2013");
 driver.findElement(By.id("submit")).submit();
 assertEquals("Error",driver.findElement(By.id("msg")).getText());
 driver.close();
}

Fig. 3. Test Cases: SearchFlightsTest.java (without page object pattern)

public class SearchFlightsPage {
 private final WebDriver driver;
 public SearchFlightsPage(WebDriver driver) {this.driver = driver;}
 public DepartingFlightsPage searchFlights(String orig, String dest,

 Date date) {
 driver.get("http://www.....com/searchFlights.asp");
 driver.findElement(By.id("orig")).sendKeys(orig);
 driver.findElement(By.id("dest")).sendKeys(dest);
 driver.findElement(By.id("date")).sendKeys(date.toString());
 driver.findElement(By.id("submit")).submit();
 return new DepartingFlightsPage(driver);
 }
}

Fig. 4. Page Object: SearchFlightsPage.java

public void testEuropeanFlight() {
 WebDriver driver = new FirefoxDriver();
 // we start from the 'searchFlights.asp' page
 SearchFlightsPage SFP = new SearchFlightsPage(driver);
 DepartingFlightsPage DFP = SPF.searchFlights("Milan","Paris",
 new Date(20,06,2013));
 // we are in the 'departingFlights.asp' page
 for each flight X returned, X = [1..n] {
 assertEquals("Milan", DFP.getOrigFlight(X));
 assertEquals("Paris", DFP.getDestFlight(X));
 }
 driver.close();
}

public void testNullFlight() {
 WebDriver driver = new FirefoxDriver();
 SearchFlightsPage SFP = new SearchFlightsPage(driver);
 DepartingFlightsPage DFP = SPF.searchFlights("Milan","Milan",
 new Date(20,06,2013));
 assertEquals("Error", DFP.getMessage());
 driver.close();
}

Fig. 5. Test Cases: SearchFlightsTest.java (with page object pattern)

between the test cases and the web pages with the aim of
reducing the coupling among them. In the following, we
will see how the test cases change when using the page
object pattern. The first step is to create a page object for
each web page involved in the test cases. Here, for space
reasons, we consider only the searchFlights.asp page (the
other is conceptually analogous). The associated page object
is SearchFlightsPage.java (see Fig. 4). It offers a method
that returns a page object (an instance of the class Depart-
ingFlightsPage.java) pertaining to the web page containing the
found flights. The test cases reported in Fig. 3 can be simplified
(see Fig. 5) making use of the methods provided by the page
objects SearchFlightsPage.java and DepartingFlightsPage.java
(not reported here). With the page object pattern it is not neces-
sary to insert explicit references to the pages’ implementation
inside the test cases: all the pages’ details are encapsulated
inside the page objects.

Now, imagine that a change is made to our flight booking
web application. For example, the input field used to enter the
departure date changes from DD-MM-YYYY, to three fields:
one for day, month, and year, respectively. Fig. 6 reports the
appearance of the new searchFlights.asp page and the related
HTML implementation.

<form name="input" action="departingFlights.asp" method="get">
 Depart From: <input type="text" id="orig" name="origAirport">

 Arrive In: <input type="text" id="dest" name="destAirport">

 Depart Date:
 <input type="text" id="dateD" name="dateD">
 <input type="text" id="dateM" name="dateM">
 <input type="text" id="dateY" name="dateY">

 <input type="submit" id="submit" value="Find Flights">
</form>

Depart From : Milan
Arrive In: Paris
Depart Date: 20 06 2013

Find Flights

Fig. 6. searchFlights.asp – Page and Source (Version 2)

Test

OK
KO

id=‘date’

not found

Version 1 Version 2

realignment

Test
I

OK

Fig. 7. Test Cases Fragility and Realignment

The previous test cases (see Fig. 3 and Fig. 5) do not
work when they are executed on this new version of the
web application, since they are unable to locate the element
characterized by date as ID value (see Fig. 7).

Thus, the test cases need to be realigned to the new release
of the web application. To this end, we have to replace the lines
used to locate and insert the date in the input field. Fig. 8
(top) reports the line that has to be removed, followed by
the new three lines that have to be inserted in the test cases
not using the page object pattern. Note that in this case the
modification has to be performed on both the tests method
(i.e., testEuropeanFlight() and testNullFlight()). On the contrary,
when adopting the page object pattern we have to apply a
quite similar modification (see Fig. 8 (bottom)) but only in
one place: inside the page object reported in Fig. 4.

 driver.findElement(By.id("date")).sendKeys("20-06-2013");

 driver.findElement(By.id("dateD")).sendKeys("20");
 driver.findElement(By.id("dateM")).sendKeys("06");
 driver.findElement(By.id("dateY")).sendKeys("2013");

 driver.findElement(By.id("date")).sendKeys(date.toString());

 driver.findElement(By.id("dateD")).sendKeys(date.getDay());
 driver.findElement(By.id("dateM")).sendKeys(date.getMonth());
 driver.findElement(By.id("dateY")).sendKeys(date.getYear());

Fig. 8. Test Cases Realignment without (top) and with (bottom) page object
pattern

IV. REALIGNMENT PROCEDURE

Recall that each test case in the PatternYES test suite was
implemented starting from the corresponding test case in the
PatternNO test suite. For this reason, each pair of test cases
(PatternYES #n, PatternNO #n) tests a functionality of the
eXact learning LCMS web application exactly in the same
way. Thus, the difference between the two test suites is only
in the usage of the page object pattern; for everything else
they are perfectly equivalent.

The two test suites were developed for the release M9 of
eXact learning LCMS. During the 2012 a new release (M10)
was developed, and the two test suites were no longer working
on the new release (i.e., all the 25 test cases composing both
test suites fail or return an error when executed).

The goal of this case study is to quantify the effort needed
to realign the two test suites using the following metrics:
number of modified LOCs and time required to complete the
realignment. To measure correctly the time required to realign
a test suite, it was necessary to devise a procedure able to
minimize any possible learning effect. Indeed, carrying out
completely the task of realignment first on a test suite and after
on the other one is not advisable. It would strongly affect the
validity of the time recorded.

Test Suite: PatternYES

realignment #1

Test Suite: PatternNO

Test 1

realignment #2

realignment #4

Test 2

realignment #3

realignment #5

Test 3

realignment #6

….. …..
realignment

Test n

realignment

R
e
a
lig

n
m

e
n
t P

ro
c
e
s
s

…..

Page

Object 1

Page

Object 2

Page

Object m

Test 1

Test 2

Test 3

Test n

Fig. 9. Test suites Realignment Process

Procedure ‘realignment #n’{
 res = run testcase;
 if (res == PASSED) then goto realignment #(n+1);
 else{ //res == ERROR or FAILURE
 record start time; //(e.g., 10:24)
 try
 {realign testcase;}
 catch (new-BUG-found-in-the-application){
 abort realignment #n;
 goto realignment #(n+1);
 }
 record stop time; //(e.g., 10:56)
 }
}

Fig. 10. Test case Realignment Procedure

The best choice would be to run a controlled experiment
with a large number of software testers (for example using a
completely randomized design [6]). In this way, each tester
would have worked only on one version of the test suite
(PatternYES or PatternNO), nullifying any possible learning
effect14.

Since, we are conducting a case study with only two
software testers (one from the industry and one from the
academy) and not a controlled experiment, we decided to
distribute the learning, resulting from the knowledge gained
during the realignment process, over both test suites. To reach
this goal, the testers worked on the two test suites at the same
time in pair programming. More in detail, the two software
testers ordered in the same way the test cases composing the
test suites. Thus, the test case #n in the PatternYES test suite,
that tests a particular functionality of eXact learning LCMS
(e.g., inserting a new user), corresponds to the test number #n
in the PatternNO test suite. As described in Fig. 9, odd test
cases were aligned first in the PatternYES version and then in
the PatternNO one, while, on the contrary, the even test cases
were aligned first in the PatternNO version and then in the
PatternYES one. Alternating the two test suites has allowed
us to distribute the knowledge gained during the process of
realignment on both test suites thus minimizing (as much as
possible) the learning effect on the overall realignment time.
To realign each test case, the software testers followed the
procedure described in Fig. 10.

14Note that, on the contrary, the learning that we could have during the
realignment of different test cases in the same test suite is not a problem
since this is natural in a real context (e.g., the realignment of the test #2 is
affected by the learning originated by the realignment of test #1).

V. RESULTS

This section reports the results from our experimental
study. Finally, a qualitative discussion is presented.

As a first step, we ran the two test suites (built with and
without page objects) against the new release of eXact learning
LCMS (M10), observing that all the 25 test cases failed for
both the test suites. No failures were due to faults/errors in the
application but only to changes that made test cases broken.
Then, for both the test suites, we applied the realignment
procedure as explained above noting down the realignment
time and the number of LOCs modified for each test case.

Fig. 11 shows, by means of a scatterplot, the time required
to realign each test case to the new release of eXact learning
LCMS. Test cases produced using the page object pattern
(PatternYES) are represented by means of rectangles, while
test cases produced without the page object (PatternNO) are
represented with triangles. We remind that for PatternYES test
cases the realignment time includes the time for modifying
the test cases and the time for realigning the related page
objects. The two regression curves shown in Fig. 11 have been
computed using the distance-weighted least squares method of
STATISTICA15.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Testcase

0

2

4

6

8

10

12

14

16

18

20

Ti
m

e
(M

in
ut

es
)

PatternYES PatternNO

Fig. 11. Time of test cases realignment

From Fig. 11, it is evident that the time spent to realign
the PatternNO test suite overcomes the time to realign the
PatternYES ones in all the test cases except that for the
test case 1 (see the regression curves). In this case, the
time was greater (8 minutes more) because for realigning the
PatternYES test case 1 was also necessary to modify three page
objects. Test cases 2, 3 and 4 required to modify only one page
object each. It is interesting to note that, from test case 5 to
test case 15, the realignment time is continuously zero because
no page objects and test cases had to be modified. Finally,
only the test cases 18 and 21 have a realignment time greater
than zero because they required to modify one page object
respectively. Overall, the PatternYES test suite has required

15A polynomial (second-order) regression is calculated for each value on
the X variable scale to determine the corresponding Y value such that the
influence of the individual data points on the regression decreases with their
distance from the particular X value (an algorithm similar to the one used by
this procedure is described by McLain, 1974).

to modify six page objects (i.e., 11 LOCs) out of total 19
page objects without any modification of the test cases. On
the contrary, the PatternNO test suite realignment has required
to modify all the 25 test cases (i.e., 90 LOCs).

Fig. 12 globally summarizes our data in terms of total
realignment time and total number of modified LOCs. The
realignment time for the PatternNO test suite took 124 minutes
in total vs. 43 minutes for the PatternYES test suite. It means
81 minutes less for the test suite produced using the page
objects. In percentage, that value corresponds to a gain in terms
of time of 65.32%16. This percentage is still larger in terms of
modified LOCs: for the PatternNO test suite it was necessary
to modify 90 LOCs in total to complete the realignment while
only 11 LOCs were modified for the PatternYES test suite
(reduction of modified LOCs = 87.77%17).

43

124

11

90

0

20

40

60

80

100

120

140

PatternYES PatternNO

M
in

u
te

s

/
 L

O
C

s

Time

Code

Fig. 12. Total realignment time and total number of modified LOCs

A. Discussion

The results of our experimental study, conducted in a real
industrial setting, confirm the belief on the effectiveness of
adopting the page object pattern to improve the maintainability
of Selenium WebDriver test cases.

Thus, we can give a positive answer to our research ques-
tion (see Section II): the adoption of the page object pattern
reduces the effort needed to repair a Selenium WebDriver test
suite. In particular, in our case study, the page object pattern
has reduced: (i) by a factor of about three, the time required
for realigning the test suite and (ii) by a factor of about eight,
the number of LOCs to modify.

Furthermore, we observed that the adoption of the page
object pattern:

– often concentrates the changes required to realign the test
cases within the page objects, thus avoiding to modify the
test cases. Indeed, after the maintenance intervention on eXact
learning LCMS, we have not modified the test cases composing
the PatternYES test suite but we have only changed the
related page objects. However, in case of radical mainte-
nance/evolution activities performed on the WAUT, it may
be necessary to change also the test cases using the page
object pattern; for instance when the navigation flow among

16Computed using the eq.: 124–124x=43
17Computed using the eq.: 90–90x=11

the pages changes or when new input fields are added for data
not required previously;

– does not reduce the fragility level of the test cases. In fact,
when we ran the two test suites (PatternYES and PatternNO)
against the new version of eXact learning LCMS, we observed
that all the 25 test cases failed for both the test suites. This
was expected since, the test cases composing the two test
suites are “linked” to the web pages exactly in the same way
(i.e., they locate the page elements using the same WebDriver
commands), even if in the case of the PatternYES test suite
the “linking” is done within the page objects;

– seems to reduce the productivity of software testers. In the
case of the PatternYES test suite, modifying 11 LOCs required
43 minutes (i.e., 15.34 LOCs/hour) while in the PatternNO test
suite, modifying 90 LOCs required 124 minutes (i.e., 43.55
LOCs/hour). However, this improvement is only apparent. In
the case of the PatternNO test suite, the same corrections were
repeated several times in different test cases (i.e., with fast copy
and paste) and this has increased the number of modified LOCs
per hour, but obviously not the real productivity of the testers.

Finally, an aspect that does not affect the obtained results
of our experimental study, but that is very interesting and that
deserves further investigation, emerges from the analysis of the
reasons of why the tests failed on the new version of eXact
learning LCMS (M10). Recall that, the test cases composing
both test suites use, when possible, the ID values to locate
the elements inside the web pages. During the process of
realignment, we realized that the majority of the test cases’
problems were due to modifications of the ID values in the
M10 release of eXact learning LCMS. This is caused by the
fact that a subset of the ID values in that application are strings
concatenated with numbers generated automatically (e.g., id1,
id2, id3, ... , idN). Thus, the addition of a new element (e.g.,
a new link) may change, in the web page structure, the IDs
of the elements following the new introduced element and so
broking the test cases using them.

VI. RELATED WORK

Collins and de Lucena [2] describe their experience in test
automation during the agile development (Scrum method) of a
web application. Similarly to us, they built the automated test
suite using Selenium IDE (our first tentative) and executed it
using Selenium RC (while we used its successor, Selenium
WebDriver). In the first phases of their project, they tried to
automate the testing process as much as possible. However, as
often happen at the beginning of a new project, the web pages
were frequently updated because they were not able to meet
users’ needs. As a consequence, the test team had to re-record
and re-write the test cases very often. In this way, the testing
process was too time consuming, so they decided to limit the
usage of automated test cases to only “stable” web pages, with
the drawback of reducing the automated test suites coverage.
We believe that the adoption of the page object pattern would
have limited this problem.

Berner et al. [1] describe their experiences on testing
automation, gained participating in dozen of industrial projects.
Among the other things, they report that, since test automation
is intended to save as much money as possible spent for
“unproductive” testing activities, often companies expect to

achieve a very fast return from their investments on test
automation. However, if these expectations are not met, test
automation is abandoned quickly. This fact may not provide
the testers of enough time to reach the level of knowledge
required to master and apply effectively techniques and so-
lution like Selenium WebDriver and the page object pattern,
thus preventing their adoption. For this reason, we plan to carry
out further investigation aimed to evaluate the effort required to
build automated test cases, using or not the page object pattern,
and combine the results with the one reported in this work. In
particular, we are interested to prove what already claimed
in [1]: “maintenance tends to have a much bigger impact on
the overall cost for testing than the initial implementation of
automated tests”. Positive results, emerging from our investiga-
tion, could encourage managers to go beyond the first phases of
test automation adoption characterized by investments without
immediate returns.

Finally, Karhu et al. [3] analysed empirically the factors
affecting the adoption of software testing automation, conduct-
ing 30 interviews with managers, testers and developers from
five different organizations. Also in this case, important factors
were, on the one side, the time reduction (and the resulting
reduction in personnel costs), but on the other side, the initial
costs increment due to test cases implementation and personnel
training.

VII. CONCLUSION AND FUTURE WORK

The main result of our case study is that the adoption of the
page object pattern has reduced, in a substantial way, the time
required to realign our test suite (65.32% reduction) and the
number of LOCs to modify (87.77% reduction). These results
are not conclusive, but this work tries to quantify, for the first
time, the actual benefits of the page object pattern in a real
industrial context and illustrates several considerations about
its usage.

Already planned future works, will be devoted to a more
extended study on the actual benefits of the page object pattern.
In particular, we would like to extend our automated test
suite to cover the entire eXact learning LCMS application
(we remind that in this work we have considered only the
DURP portion). Another interesting direction is investigating
the additional effort and cost (if any) required to model web
pages with page objects during the process of test automation.
Indeed, from a manager point of view, the adoption of the
page object pattern should take into account also the costs it
possibly introduces.

REFERENCES

[1] S. Berner, R. Weber, and R. Keller. Observations and lessons learned
from automated testing. In Proc. of ICSE 2005, pages 571–579. IEEE.

[2] E. Collins and V. de Lucena. Software test automation practices in agile
development environment: An industry experience report. In Proc. of
AST 2012, pages 57–63. IEEE.

[3] K. Karhu, T. Repo, O. Taipale, and K. Smolander. Empirical observations
on software testing automation. In Proc. of ICST 2009, pages 201–209.

[4] F. Ricca and P. Tonella. Detecting anomaly and failure in web applica-
tions. IEEE Multimedia, 13(2):44–51, 2006.

[5] T. Wissink and C. Amaro. Successful test automation for software
maintenance. In Proc. of ICSM 2006, pages 265–266. IEEE.

[6] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2000.

