
Copyright:

© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in Proceedings of 1st

International Workshop on Joining AcadeMiA and Industry Contributions to testing Automation

(JAMAICA 2013)

http://dx.doi.org/10.1145/2489280.2489284

Comparing the Maintainability of Selenium WebDriver

Test Suites Employing Different Locators:

A Case Study

Maurizio Leotta, Diego Clerissi, Filippo Ricca, Cristiano Spadaro

Abstract:

Test suite maintenance tends to have the biggest impact on the overall cost of test

automation. Frequently modifications applied on a web application lead to have one or

more test cases broken and repairing the test suite is a time-consuming and expensive

task.

This paper reports on an industrial case study conducted in a small Italian company

investigating on the analysis of the effort to repair web test suites implemented using

different UI locators (e.g., Identifiers and XPath).

The results of our case study indicate that ID locators used in conjunction with LinkText

is the best solution among the considered ones in terms of time required (and LOCs to

modify) to repair the test suite to the new release of the application.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1145/2489280.2489284

Comparing the Maintainability of Selenium WebDriver Test
Suites Employing Different Locators: A Case Study

Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1, Cristiano Spadaro2

1 DIBRIS - Università di Genova, Italy 2 eXact learning solutions S.p.A., Sestri Levante, Italy

{ maurizio.leotta | diego.clerissi | filippo.ricca }@unige.it, c.spadaro@exactls.com

ABSTRACT
Test suite maintenance tends to have the biggest impact on
the overall cost of test automation. Frequently modifications
applied on a web application lead to have one or more test
cases broken and repairing the test suite is a time-consuming
and expensive task.

This paper reports on an industrial case study conducted
in a small Italian company investigating on the analysis of the
effort to repair web test suites implemented using different
UI locators (e.g., Identifiers and XPath).

The results of our case study indicate that ID locators
used in conjunction with LinkText is the best solution among
the considered ones in terms of time required (and LOCs
to modify) to repair the test suite to the new release of the
application.

Categories and Subject Descriptors:
D.2.5 [Testing and Debugging]: Testing tools

General Terms: Experimentation, Measurement

Keywords: Web Application Testing, Test Automation,
Selenium WebDriver, Maintainability, UI Locators

1. INTRODUCTION
Importance of test automation in Web engineering is before

everybody’s eyes [5, 6]. Test Automation is considered crucial
for the success of large web applications: it saves a lot of time
in testing and helps to release web applications with fewer
defects [1]. One of the main advantages of test automation is
that software developers can run tests more often and finding
bugs on the early stage of development.

However, “everything has a prize”. In the context of auto-
mated web testing, the prize is associated with the concept
of fragile tests: a fragile test is a test that can easily break
when the Web Application Under Test (WAUT) changes.
And, actually this happens very often because functional
tests are usually built on top of web pages (e.g., recover a
button in the web page, click it, verify a value in the created
table) with the consequence that also a small change in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JAMAICA ’13, July 15, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2161-7/13/07 ...$15.00.

web page (e.g., in the layout of the page) leads to have one
or more test cases broken (e.g., test cases are not more able
to locate a link, an input field or a submission button). This
implies that: when the web pages are frequently updated,
the corresponding test suite has to be frequently repaired.
This is a tedious and time consuming task for the test teams
and an expensive task for the organizations since it has to
be manually performed by software testers.

This paper reports some empirical observations and the
challenges of a mixed test team of academy and industry
workers new to Test Automation. The work was performed
in close cooperation with the Software Engineering research
group at Genoa University1. This case study started as
a thesis project. During this exploratory case study, the
objective of our industrial partner2 was: comparing different
solutions and ways to build automated tests for a web-based
Learning Content Management System named eXact learning
LCMS (one of the software they produce) and understanding
which of them is able to reduce the maintenance effort needed
to repair a broken test suite.

After an initial planning step [4], the test team decided to
use the Selenium WebDriver framework and the page object
pattern for producing the test cases. Thus, in this work
we focus on the analysis of the costs associated with the
repairing of Selenium WebDriver test suites implemented
using different methods to locate UI elements (e.g., Identifiers
and XPath). To the best of our knowledge, this is the first
work trying to quantify the maintenance effort required to
repair test suites adopting different locators.

The remainder of this paper describes the case study and
its outcomes. Section 2 describes some useful “ingredients”
to understand the case study: Selenium WebDriver, the page
object pattern and some locators; Section 3 details the case
study; Section 4 sketches the outcomes of the case study and
presents the threats to validity. Finally, Section 5 concludes
the paper.

2. SELENIUM “INGREDIENTS”
In this Section, we first explain Selenium WebDriver, i.e.,

the framework used to produce our test suite. Second, we
introduce the page object pattern. Third, we present the var-
ious methods used in the Selenium WebDriver framework to
locate UI elements. Finally, we show how to create and repair
the test cases and the page objects using these methods.

1
http://softeng.disi.unige.it/

2eXact learning solutions S.p.A., an Italian software development
company: http://www.exact-learning.com/en/

<form name="loginform" action="homepage.asp" method="post">

 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login

</form>

<form name="loginform" action="homepage.asp" method="post">

 Username: <input type="text" name="username">

 Password: <input type="text" name="password">

 Login

</form>

Username:
Password:
 Login

Figure 1: login.asp – Page & Source (with/without ID)

To make the description clearer, we will use a running
example to explain the various concepts introduced. Let’s
imagine having to test a portion of a web application that
allows to authenticate users. In a very simplified case, we
could have a login page (called login.asp) similar to the one
shown in Fig. 1 (top) that requires the users to enter the
credentials (i.e., username and password). This page can
be implemented in HTML as shown in Fig. 1, where two
different versions are reported, with (middle) and without
(bottom) ID attributes3 for the HTML tags. For simplicity
and to make the code clearer, we have omitted the tags not
relevant for the comprehension of the example. After having
inserted the credentials and clicked on“Login”the application
shows the home page (homepage.asp). If the credentials are
correct, the username and the logout button are reported in
the upper right corner of the home page (see Fig. 2, top).
Otherwise, the Guest user and the login link are shown (see
Fig. 2, bottom). For simplicity, the application does not
report any error message in case of invalid credentials or
unrecognised users.

 John.Doe |

<div id="username">John.Doe</div> |

Logout

<div>John.Doe</div> | Logout

Logout

 Guest |

<div id="username">Guest</div> |

Login

<div>Guest</div> | Login

Login

Figure 2: homepage.asp (portion) as User (top) and as

Guest (bottom) – Page & Source (with/without ID)

2.1 Selenium WebDriver
Selenium4 is one of the most popular suites for automating

web application testing and it is employed in many industrial
projects [2, 3]. Essentially, this suite is composed of two
tools: Selenium IDE5 and Selenium WebDriver6. The former
tool is implemented as Firefox extension and provides the
recording and replay capabilities (i.e., Capture/Playback [7]).

3ID attributes specify unique identifiers for HTML elements (i.e.,
the value must be unique within the entire HTML document).
4

http://seleniumhq.org/
5

http://seleniumhq.org/projects/ide/
6

http://seleniumhq.org/projects/webdriver/

In practice, Selenium IDE records the user actions that can
be transformed in test cases adding some assertions. Finally,
test cases can be re-executed inside the Firefox browser. On
the contrary, Selenium WebDriver provides a more compre-
hensive programming interface used to control a browser.
Test cases are implemented manually in a programming lan-
guage integrating Selenium WebDriver commands with JUnit
or TestNG assertions. In this work we will focus on Selenium
WebDriver, the framework chosen by our industrial partner.

2.2 Page Object
The page object pattern is used to model the web pages

involved in the test process as objects, employing the same
programming language used to write the test cases. In
this way, the functionalities offered by a web page become
“services” (i.e., methods) offered by the corresponding page
object and they can easily be called within any test case.
Thus, all the details and mechanics of the web page are
encapsulated inside the page object. Adopting the page
object pattern allows the test developer to work at a higher
level of abstraction. The page object pattern is used to reduce
the coupling between web pages and test cases. For these
reason, adopting the page object pattern improves test suite
maintainability [4].

2.3 UI Locators
Selenium WebDriver offers several different ways to locate

the UI elements composing a web page. The most efficient
one, according to Selenium WebDriver developers7, is search-
ing by their ID values (e.g., locate the password input field,
in our example, by searching the value PW among the ID
values). In case the ID attributes are not inserted in the
HTML tags a XPath locator can be alternatively used (e.g.,
locate the password input field using the following XPath
expression: /html/body/form/input[2]). Finally, the LinkText
locator allows to select a hyperlink in a web page making
use of its displayed text (i.e., the string contained between
<a ...> and). Note that, since this method can be only
used to locate links, it cannot be used to build a complete
test suite. For this reason, it is only used as a complement
of other locators8.

2.4 Examples of Selenium Test Cases
Now, let us see how it is possible to test the above men-

tioned user authentication example employing Selenium Web-
Driver and using different UI locators. In all the test cases,
we will use the page object pattern. The Java code has been
slightly simplified to make the description more concise.

As an example, we report two simple test cases: a successful
authentication test case and an unsuccessful one. The first
logs in using correct credential (i.e., existing username and
password: John.Doe and 123456) and verifies that in the
home page the user has been authenticated (see Fig. 2, top).
The second test case inserts unrecognised credentials and
verifies that in the home page no user has been authenticated
(i.e., Guest must be displayed in the upper right corner of
the home page, see Fig. 2, bottom).

The first step is to create the two page objects LoginPage.java

and HomePage.java corresponding to the web pages login.asp

and homepage.asp (see Fig. 3). The page object LoginPage.java

7
http://seleniumhq.org/docs/03 webdriver.jsp

8For the sake of completeness, Selenium WebDriver offers also
other locators not considered here (e.g., CSS locators).

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver = driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.id("PW")).sendKeys(PW);
 driver.findElement(By.id("login")).click();
 return new HomePage(driver);
 }
}

public class HomePage {
 private final WebDriver driver;
 public HomePage(WebDriver driver) {this.driver = driver;}
 public String getUsername() {
 return driver.findElement(By.id("username")).getText;
 }
}

Figure 3: Page objects LoginPage.java and Home-
Page.java (ID locators version)

offers a method to log in in the application. That method
takes as input a username and a password, inserts them
in the corresponding input fields, clicks the Login button
and returns a page object of kind HomePage.java (since after
clicking the Login button the application moves to the page
homepage.asp). HomePage.java contains a method that returns
the username authenticated in the application or Guest when
no user is authenticated. In these page objects, we have used
the values of the ID attributes to locate the HTML tags.

The second step is to develop the two test cases making
use of those page objects (see Fig. 4). More in detail, we
can see that in each test method: first, a WebDriver of
type FirefoxDriver is created allowing to control the Firefox
browser9; second, the WebDriver (i.e., the browser) opens
the specified URL and creates the page object, that is an
instance of LoginPage.java, related to the page login.asp; third,
using the method login(...) offered by the page object, a
new page object (HP) representing the page homepage.asp

is created; finally, the assertion can be checked using the
method getUsername().

public void testLoginOK() {

 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("John.Doe","123456");
 // we are in the 'homepage.asp' page
 assertEquals("John.Doe", HP.getUsername());
 driver.close();
}

public void testLoginKO() {
 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("Inexistent","Inexistent");
 // we are in the 'homepage.asp' page
 assertEquals("Guest", HP.getUsername());
 driver.close();
}

Figure 4: TestLoginOK and TestLoginKO test cases

As said before, Selenium WebDriver offers also the possibil-
ity of locating hyperlinks by LinkText. Fig. 5 (top) presents
an equivalent version of the method login(...) of the page
object LoginPage.java where the LinkText locator is used.

There are different kinds of XPath expressions that can be
used to locate elements. For instance, to locate the first input
field in Fig. 1 (i.e., username), we could: (1) navigate the
complete HTML tree starting from the beginning of the web

9Selenium allows also to employ other browsers, e.g., IE8.

public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.id("PW")).sendKeys(PW);
 driver.findElement(By.linkText("Login")).click();
 return new HomePage(driver);
}

public HomePage login(String UID, String PW) {
 driver.findElement(By.xpath("/html/body/form/input[1]")).sendKeys(UID);
 driver.findElement(By.xpath("/html/body/form/input[2]")).sendKeys(PW);
 driver.findElement(By.xpath("/html/body/form/a")).click();
 return new HomePage(driver);
}

public HomePage login(String UID, String PW) {
 driver.findElement(By.xpath("/html/body/form/input[1]")).sendKeys(UID);
 driver.findElement(By.xpath("/html/body/form/input[2]")).sendKeys(PW);
 driver.findElement(By.linkText("Login")).click();
 return new HomePage(driver);
}

Figure 5: LoginPage.java (ID+LinkText, XPath and
XPath+LinkText locators versions)

page with the XPath expression /html/body/form/input[1], or
(2) select the 1st element of type input using the expression
(//input)[1]. Fig. 5 (middle) presents the method login(...) of
the page object LoginPage.java built using the first format.

Finally, also XPath can be combined with the LinkText
locator, obtaining the code shown in Fig. 5 (bottom).

2.5 Examples of Test Suite Repairing
As an example, in the following, we consider four equiva-

lent test suites implemented using different UI locators (i.e.,
ID, ID+LinkText, XPath and XPath+LinkText) and three
possible modifications of our Login page that break the test
suites.
– In the login.asp page the“Login” link name changes in“Login

Now!”. The page objects LoginPage in the ID+LinkText
and XPath+LinkText test suites need to be repaired (see
Fig. 6). On the contrary, the other test suites are not
affected by this change.

– The structure of the login.asp page is changed (e.g., the form
is placed inside a table). Only the page objects LoginPage
in the XPath and XPath+LinkText test suites need to be
repaired. ID locators are indifferent to this change.

– The IDs of all the login.asp page elements are changed (it
could happen, for instance, when the IDs are auto-generated
in a “dumb” way, e.g., id1, ..., idn). Only the page objects
LoginPage in the ID and ID+LinkText test suites need to
be repaired.

WAUT - Release N

WAUT - Release N+1

 driver.findElement(By.linkText("Login")).click();

 driver.findElement(By.linkText("Login Now!")).click();

Username:
Password:

Username:
Password:

OK

repairing
modify the page object

LoginPage.java

KO
LinkText=‘Login’

not found

Login

Login Now!

Test

Test'

Figure 6: Repairing required when the“Login” link
changes in “Login Now!”

3. THE CASE STUDY
The goal of this work is understanding which UI locator

(among the ones seen before) is able to reduce the mainte-
nance effort needed to repair a broken test suite of a WAUT.

3.1 Web Application Under Test
The Web Application Under Test is eXact learning LCMS.

It is mainly a Learning Content Management System for
eLearning content production that contains also a Learning
Management System for eLearning content delivery. The
product is a web application developed in ASP.NET that
relies on a Microsoft SQL Server database. It is designed with
a multi-tier approach consisting of presentation, business and
data access layers. The development started about 6 years
ago, with a development team composed by 3-4 software
analysts and developers. eXact learning LCMS is currently
composed by about 700.000 lines of code, 200 ASP.NET web
pages, and has been developed using Visual Studio IDE. The
developers of eXact learning LCMS used a facility of Visual
Studio IDE that adds an auto-generated ID for each HTML
tag (e.g., ctl00 Menu Repeater ctl01 Link).

3.2 Compared Test Suites
As a first step, the test team focused on a portion of the

eXact learning LCMS web application to test with Selenium
WebDriver. They chose the DURP portion, i.e., the portion
that manages the Domains, Users, Roles and Permissions
that can be defined in the application. The test team opted
for that portion because it is crucial for an LCMS and because
it is quite common in all the web-based applications (so it is
possible to reuse the knowledge gained in this project and
the produced test cases).

The test team developed a first Selenium WebDriver test
suite using the ID locators and the page object pattern10.
They chose to employ: (1) ID locators, since it is the most
efficient method (see Section 2.3), taking advantage of auto-
generated IDs, and (2) the page object pattern, since it allows
to reduce the coupling between test cases and web pages.

The so developed test suite for the DURP portion of eXact
learning LCMS is composed of 25 test cases and 19 page
objects for a total of 3320 Java LOCs11 (1720 for the test
cases and 1600 for the page objects). Overall, there are
131 localization lines in the 19 page objects. This means
that the 25 test cases use 131 lines in total to locate the UI
elements. We recall that, a localization line is the line calling
the driver to find a UI element (e.g., all the lines starting
with driver.findElement in Fig. 3 are localization lines).

Each test case in our test suite performs several steps
such as navigating web pages, clicking links, filling forms
and evaluating assertions. They were built using conditional
statements, loops, logging functionality, exception handling,
reporting functionality and all of them are parameterized
(a.k.a. data-driven) test cases12.

As an example, we describe the AddUserTest test case. This
test case has been developed to test the functionality that

10This test suite is a slightly modified version of the one used in [4].
11LOCs have been measured as the number of source
code lines (without imports, comment lines or empty
lines) formatted following the Sun’s Java Code Conventions.
http://java.sun.com/docs/codeconv/index.html

12Parameterized test cases are test cases executed several times,
each time passing them different arguments (i.e., input and ex-
pected values).

Test Suite

ID locators

Test Cases

Page

Objects
ID-based

Web Application Under Test

Test Suite
ID+LinkText

locators

Test Cases

Page

Objects
ID+LinkText

based

Test Suite

XPath locators

Test Cases

Page

Objects
XPath-based

Test Suite
XPath+LinkText

locators

Test Cases

Page

Objects
XPath+LinkText

based

= = =

≠ ≠ ≠

Figure 7: Test Suites, Test Cases and Page Objects

allows, only to certain roles (e.g., administrator), to add
new users to the application. The test case opens the Login-
Page, logs in with an administrator account (login and pwd
are recovered from a CSV file) and navigates the Home-
Page, AdministrationPage, and UserMngPage to reach the
AddNewUserPage. Then, the test case fills the form with
the user data (recovered from a CSV file) and submits it. If
everything is ok, the eXact learning LCMS application shows
a summary page (called UserDetailsPage) listing the inserted
user data. At this point, the test case locates each web page
element displaying the data inserted (e.g., username, name,
surname, email) and verifies that the values contained in the
page are equal to the ones inserted before.

Note that the test suite is not trivial: when the test suite
is executed, 336 test case instances are run (since each test
case is parameterized with several different input/expected
values stored in a CSV file). The complete execution of the
test suite takes about 3 hours and half employing a computer
equipped with an Intel Core i5 dual-core processor (3.1 GHz),
8 GB RAM and a fast (100 Mb/s) network connection to
the servers hosting the eXact learning LCMS application.

Then, starting from the ID test suite, we built three equiv-
alent test suites substituting the ID locators with XPath
and LinkText locators obtaining the ID+LinkText, XPath
and XPath+LinkText test suites. All these new test suites
are equivalent to the ID one, since the test cases are exactly
the same (they test the same functionalities using the same
services offered by the page objects) and only the methods
used to locate the UI elements inside the page objects are
different (see Fig. 7). Note that, the effort for repairing a
test case also includes the one required to repair the page
objects it uses.

In our experiment, during the development of the XPath-
based test suites, we chose to use absolute XPath expressions
(e.g., /html/body/form/input[1]). Indeed, given that all the
web page elements in the WAUT have an ID, locating them
by means of relative XPath expressions (e.g., //*[@id=’UID’])
would be equivalent to find these elements using their IDs.
Even if, at first sight, absolute XPath expressions could ap-
pear quite complex, we have used two tools to automatically
build/modify them (i.e., FireBug13 and FirePath14).

3.3 Research Question & Dependent Variable
We compared the four test suites trying to answer to the

following research question:

13
https://addons.mozilla.org/en/firefox/addon/firebug/

14
https://addons.mozilla.org/en/firefox/addon/firepath/

RQ: Which is the best locator among ID, ID+LinkText,
XPath and XPath+LinkText in terms of maintenance cost
reduction?

In other words, we are interested to determine whether one
(or more) of the proposed methods for locating UI elements
is clearly better than the other ones for reducing the effort to
repair a test suite when a new version of a WAUT is created.
We measured the dependent variable repairing effort in terms
of time (minutes) and number of line of code to change for
all the four considered test suites.

3.4 Repairing Procedure
The four equivalent test suites were developed for the

release M9 of eXact learning LCMS. During the 2012 a new
release (M10) was developed and the four test suites were
no longer working on it.

To reach our goal (i.e., quantifying the effort needed to
repair the four test suites and understanding which is the
best locator), we had to measure the time required to repair
the test suites. Since, we conducted a case study with only
two software testers working in pair programming (one from
the industry and one from the academy) and not a controlled
experiment with several participants, it was necessary to
devise a procedure able to reduce as much as possible any
possible learning effect among the repairing tasks conducted
on different test suites15.

We decided to perform the repairing of each test suite
every 7 days. In this way, we reduced possible learning
effects, since after 7 days it is really difficult to remember
which are the auto-generated IDs or XPath expressions to
modify. Moreover, it is important to highlight that the
modifications required to repair a test suite can be partially
or totally different among different test suites since each test
suite employs a different way to locate UI elements. This is
particularly true among the ID and XPath based test suites.
For this reason, to distance as much as possible similar test
suites, we ordered the repairing tasks in the following way: ID
test suite repairing, 7 days pause, XPath test suite repairing,
7 days pause, ID+LinkText test suite repairing, 7 days pause,
XPath+LinkText test suite repairing.

Finally, for each test suite, the two software testers ordered
in the same way the test cases composing them. For all the
test cases, the two software tester executed the algorithm
described in Fig. 8 to repair them.

Procedure ‘repairing #n’{
 res = run testcase;
 if (res == PASSED) then goto repairing #(n+1);
 else{ //res == ERROR or FAILURE
 record start time; //(e.g., 10:24)
 try
 {realign testcase;}
 catch (new-BUG-found-in-the-application){
 abort repairing #n;
 goto repairing #(n+1);
 }
 record stop time; //(e.g., 10:56)
 }
}

Figure 8: Test case repairing algorithm (1 ≤ n ≤ 25)

15Note that, instead the learning that we could have during the
repairing of different test cases in the same test suite is not a
problem since this is natural in a real context (e.g., the repairing of
the test #2 is affected by the learning originated by the repairing
of test #1).

4. RESULTS
As a first step, we ran the four test suites against the new

release of eXact learning LCMS (M10), observing that all the
25 test cases composing each test suite failed for all the four
test suites. This means that all the considered test suites
are equally fragile. Then, for each test suite, we applied the
repairing procedure above explained, noting down: (1) the
time required to repair each test case and (2) the number of
LOCs really modified. During the repair task, we discovered
that the changes made in eXact learning LCMS (M10) did
not effect the logic of the test cases (i.e., the modifications
were minimal; only the layout/structure of the pages was
changed). For this reason, we modified only the page objects,
and more precisely a subset of the 131 lines implementing
the localization of UI elements (see Section 3.2).

Fig. 9 shows, by means of a scatterplot, the time required
to repair the test cases to the new release of eXact learning
LCMS. The test cases using ID and ID+LinkText locators
are represented by means of rectangles, while test cases using
XPath and XPath+LinkText locators are represented by
means of triangles. The four regression curves shown in
Fig. 9 have been computed using the distance-weighted least
squares method of STATISTICA16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Test Cases

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

Ti
m

e
(M

in
ut

es
)

ID
ID+LinkText
XPath
XPath+LinkText

Figure 9: Time to repair the test cases

From Fig. 9 it is evident that the time spent for repairing
XPath-based test cases goes beyond the time for repairing
the ID-based ones in almost all the cases. Moreover, it is
interesting to note that the trend of the time required for
repairing the test cases is similar for all the four test suites
(high for the first test cases and low for the subsequent ones,
see the regression curves in Fig. 9). The first test cases
required more time to be repaired than the subsequent ones
since the page object pattern has been adopted. Indeed, to
repair the first test cases of each test suite (e.g., test cases
1, 2, 3 and 4), we modified the page objects they use. But,
these modifications were also useful for the subsequent test
cases (e.g., 5, 6, and 7), thus they required less time to be
repaired.

Fig. 10 globally summarizes our data in terms of total
repairing time and number of modified LOCs. The two ID-
based test suites have required a similar amount of repairing
time, 43 minutes when the ID locator is used and 36 minutes

16A polynomial (second-order) regression is calculated for each
value on the X variable scale to determine the corresponding Y
value: an algorithm similar to the one used here is described by
McLain, 1974.

43 m
36 m

183 m

135 m

9 LOC 8 LOC

96 LOC
86 LOC

0

20

40

60

80

100

120

140

160

180

200

ID ID+LinkText XPath XPath+LinkText

M
in

u
te

 /
 L

O
C

Time
Code

Figure 10: Time required and LOCs modified

when it is used in conjunction with the LinkText locator. This
is correlated with the number of localization lines modified
that are very similar, 9 and 8 LOCs respectively. Thus,
we can say that: (1) repairing the two ID-based test suites
required a similar amount of time and LOCs to modify, and
(2) when LinkText is used we noted a slightly improvement for
both variables (time –16.28%17 and LOCs –11.11%). Instead,
the two XPath-based test suites have decisively obtained
worse results. Indeed, for their repairing, they required
183 minutes with the XPath locator and 135 minutes with
the XPath+LinkText locator. Also for what concern the
number of LOCs to modify (i.e., the localization lines) it
is significantly higher than ID-based test suites, since the
modified LOCs are 96 and 86 LOCs respectively. This is
correlated with the high number of localization lines modified,
i.e., 96 over 131 (73.28%) when the XPath locator is used by
itself and 86 over 131 (65.65%) when the LinkText locator is
used in conjunction with XPath. Also for XPath-based test
suites, the combined usage with the LinkText locator gave
an advantage in terms of time and LOCs to modify (time
–26.23%18 and LOCs –10.42%).

The answer to our research question RQ can be easily de-
duced by Fig. 11. It summarizes some results about the four
implemented test suites: ID-based test suites have required
the lowest maintenance effort, while the XPath-based test
suites have required a higher effort (about 4 times more for
what concerns the time and 10 times more for the number
of LOCs to modify). In both cases the combined use of ID
and XPath with LinkText has slightly improved the results.

4.1 Threats to Validity
Several factors could have influenced the results of our

case study. First, we considered only a portion (the DURP)
of a specific software for the Learning Content Management
domain. Second, we considered a limited set of changes
between two subsequent releases. However, it is important
to underline that the eXact learning LCMS application is a
real industrial application and that the considered changes
are the typical ones that can be found during the develop-
ment/maintenance of any web application (e.g., bug fixing,
addition of web pages and layout modification). Thus, al-
though the project involved the testing of specific software
for the Learning Content Management domain, the experi-
ence is likely to be applicable across many commercial and
government domains and we believe that the obtained results
could also be generalized to other types of web applications.

17Computed using the eq.: 43–43x=36
18Computed using the eq.: 183–183x=135

Test Suites Minutes Difference LOCs Difference
ID 43 9
ID+LinkText 36 - 16 % 8 - 11 %
XPath 183 + 326 % 96 + 967 %
XPath+LinkText 135 + 214 % 86 + 856 %

CodeTime

Figure 11: Comparison of the effort required when
different locators are used

Future replications involving different applications and more
expert software testers would help in generalizing the results.
Finally, learning effects may have occurred while the testers
repaired the test suites even if we tried to limit them as much
as possible with a specific procedure.

5. CONCLUSION AND FUTURE WORK
The main result of our industrial case study is that, from

the point of view of repairing effort, ID locators are better
than XPath locators even if IDs are auto-generated. More-
over, the combined use of ID or XPath with LinkText has
slightly improved the results with respect to the bare locators.
These results are not conclusive, but this work compares for
the first time, in a real industrial context, four Selenium
test suites built using different UI locators and confirm with
some data the anecdotal knowledge that locating elements
by identifier is better. Moreover, these results, if confirmed,
could help a manager interested in testing activities to make
important decisions. For example, if the WAUT has to be
maintained for a long time and meaningful identifiers have
not been added to the web elements during development, it
is better adding auto-generated IDs to the web elements and
using the ID locators instead of XPath locators.

Already planned future works, will be devoted to a more
extended study on the actual benefits of ID locators. In
particular, we would like to extend our automated test suite
to cover the entire eXact LCMS application.

6. REFERENCES
[1] S. Berner, R. Weber, and R. Keller. Observations and

lessons learned from automated testing. In Proc. of
ICSE 2005, pages 571–579. IEEE, 2005.

[2] E. Collins and V. de Lucena. Software test automation
practices in agile development environment: An industry
experience report. In Proc. of AST 2012, pages 57–63.
IEEE, 2012.

[3] B. Haugset and G. Hanssen. Automated acceptance
testing: A literature review and an industrial case study.
In Proc. of AGILE 2008, pages 27–38. IEEE, 2008.

[4] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro.
Improving test suites maintainability with the page
object pattern: an industrial case study. In Proc. of 6th
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2013),
page (to appear). IEEE, 2013.

[5] F. Ricca and P. Tonella. Testing processes of web
applications. Ann. Softw. Eng., 14(1-4):93–114, 2002.

[6] F. Ricca and P. Tonella. Detecting anomaly and failure
in web applications. IEEE MultiMedia, 13(2):44–51,
2006.

[7] T. Wissink and C. Amaro. Successful test automation
for software maintenance. In Proc. of ICSM 2006, pages
265–266. IEEE, 2006.

