
Copyright:

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Capture-Replay vs. Programmable Web Testing:

An Empirical Assessment during Test Case Evolution

Maurizio Leotta, Diego Clerissi, Filippo Ricca, Paolo Tonella

Abstract:

There are several approaches for automated functional web testing and the choice among

them depends on a number of factors, including the tools used for web testing and the costs

associated with their adoption. In this paper, we present an empirical cost/benefit analysis of

two different categories of automated functional web testing approaches: (1) capture-replay

web testing (in particular, using Selenium IDE); and, (2) programmable web testing (using

Selenium WebDriver). On a set of six web applications, we evaluated the costs of applying

these testing approaches both when developing the initial test suites from scratch and when

the test suites are maintained, upon the release of a new software version.

Results indicate that, on the one hand, the development of the test suites is more expensive in

terms of time required (between 32% and 112%) when the programmable web testing

approach is adopted, but on the other hand, test suite maintenance is less expensive when this

approach is used (with a saving between 16% and 51%). We found that, in the majority of the

cases, after a small number of releases (from one to three), the cumulative cost of

programmable web testing becomes lower than the cost involved with capture-replay web

testing and the cost saving gets amplified over the successive releases.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/WCRE.2013.6671302

Capture-Replay vs. Programmable Web Testing:
An Empirical Assessment during Test Case Evolution

Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

maurizio.leotta@unige.it, diego.clerissi@gmail.com, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—There are several approaches for automated func-
tional web testing and the choice among them depends on a
number of factors, including the tools used for web testing and
the costs associated with their adoption. In this paper, we present
an empirical cost/benefit analysis of two different categories
of automated functional web testing approaches: (1) capture-
replay web testing (in particular, using Selenium IDE); and,
(2) programmable web testing (using Selenium WebDriver). On
a set of six web applications, we evaluated the costs of applying
these testing approaches both when developing the initial test
suites from scratch and when the test suites are maintained, upon
the release of a new software version.

Results indicate that, on the one hand, the development of the
test suites is more expensive in terms of time required (between
32% and 112%) when the programmable web testing approach
is adopted, but on the other hand, test suite maintenance is less
expensive when this approach is used (with a saving between 16%
and 51%). We found that, in the majority of the cases, after a
small number of releases (from one to three), the cumulative
cost of programmable web testing becomes lower than the cost
involved with capture-replay web testing and the cost saving gets
amplified over the successive releases.

Index Terms—Test Case Evolution, Test Case Repair, Empiri-
cal Study, Selenium IDE, Selenium WebDriver.

I. INTRODUCTION

Web applications provide critical services to our society,
ranging from the financial and commercial sector, to the public
administration and health care. The widespread use of web
applications as the natural interface between a service and its
users puts a serious demand on the quality levels that web
application developers are expected to deliver. At the same time,
web applications tend to evolve quickly, especially for what
concerns the presentation and interaction layer. The release
cycle of web applications is very short, which makes it difficult
to accommodate quality assurance (e.g., testing) activities in
the development process when a new release is delivered. For
these reasons, the possibility to increase the effectiveness and
efficiency of web testing has become a major need and several
methodologies, tools and techniques have been developed over
time [5], [4], [9], [12], [13].

Among the recently developed approaches to web testing, we
can recognize two major trends, associated with a profoundly
different way of facing the problem. On the one hand, capture-
replay (C&R) web testing is based on the assumption that the
testing activity conducted on a web application can be better
automated by recording the actions performed by the tester

on the web application GUI and by generating a script that
provides such actions for automated, unattended re-execution.
On the other hand, programmable web testing aims at unifying
web testing with traditional testing, where test cases are
themselves software artefacts that developers write by resorting
to specific testing frameworks. For web applications, this means
that the framework has to support an automated, unattended
interaction with a web page and its elements, so that test cases
can, for instance, automatically fill-in and submit forms or
click on hyperlinks.

C&R test cases are very easy to obtain and actually do not
require any advanced testing skill. Testers just exercise the
web application under test and record their actions. However,
during software evolution the test suites developed using a C&R
approach tend to be quite fragile. A minor change in the GUI
might break a previously recorded test case, whose script needs
to be repaired manually, unless it is re-recorded from scratch,
on the new version of the web application. Programmable test
cases require non trivial programming skills, the involved effort
being comparable to that required for normal code development.
However, all benefits of modular programming can be brought
also to the test cases, such as parametric and conditional
execution, reuse of common functionalities across test cases,
robust mechanisms to reference the elements in a web page.

In this paper, we empirically investigate the trade-off between
C&R and programmable web testing. In addition to validating
our initial hypothesis, that C&R test cases are cheaper to write
from scratch than programmable test cases, but are also more
expensive to maintain during software evolution, we want to
estimate quantitatively the return on the investment. Specifically,
we determine the number of software releases after which
the savings of programmable test cases overcome the costs
initially paid for their development. We have measured such
trade-off on six real web applications. The findings reported
in this paper include a detailed analysis of the features of
each web application that make the investigated trade-off more
or less favourable in each specific context, so as to derive
some practical guidelines for developers who want to make an
informed decision between the two alternatives.

The paper is organized as follows: Section II gives some
background on test case development using the C&R vs. the
programmable approach, by considering two specific tools
that implement them. Section III describes the test case repair
activities and provides a mathematical model of the investigated

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

272

trade-off. Section IV reports our experimental results and
our detailed discussion of the pros and cons of the two
approaches in specific scenarios. We then present the related
works, followed by conclusions and future work.

II. APPROACHES TO WEB TESTING

There are several approaches for functional web testing
and the choice among them depends on a number of factors,
including the technology used by the web application and the
tools (if any) used for web testing. In this section, we consider
two different categories of automated functional web testing
approaches: C&R and programmable web testing.

A. Capture-Replay Web Testing

C&R web testing is based on capture/replay automated tools.
Capture/replay tools have been developed as a mechanism
for testing the correctness of interactive applications (GUI
or Web applications). Using a capture/replay tool, a software
tester can run a Web application and record the entire session.
The tool records all the user’s events on the navigated Web
pages, such as the key presses and mouse clicks, in a script,
allowing a session to be rerun automatically without further
user interaction. Finally, a test case is produced by adding
one or more assertions to the recorded script. By replaying
a given script on a changed version of the Web Application
Under Test (WAUT), capture/replay tools support automatic
regression testing.

Building test cases using this approach is a relatively simple
task. Even persons without programming expertise can easily
build a complete test suite for a complex Web application.
However, there are some drawbacks: (1) the scripts resulting
from this method contain hard-coded values (the inputs), that
have to be changed if anything changes during the evolution
of the WAUT; (2) the test cases are strongly coupled with web
pages, with the consequence that even a small change in the
WAUT (e.g., in the layout of the page) leads to one or more
broken test cases (e.g., test scripts fail to locate a link, an input
field or a submission button because of the layout change).

A tool for Web application testing belonging to this category
is Selenium IDE1. Selenium IDE is not only a capture/replay
tool: it is a complete IDE, as suggested by its name. In
particular, Selenium IDE provides several smart features such
as: (1) it allows software testers to record, edit, and debug
test cases expressed in the Selenese language2; (2) it supports
smart field selection (e.g., using IDs, names, or XPath locators,
as needed) and it offers a locator assistance function; (3) it
can save test cases as HTML, Java code, or any other format;
and (4) it suggests assertions.

Let us assume we have to test a portion of a web application
that authenticates users. In a very simplified case, we would
have a login page (e.g., called login.asp) that requires the users
to enter their credentials, i.e., username and password (see
Fig. 1). After having inserted the credentials and clicked on

1http://seleniumhq.org/projects/ide/
2Each Selenese line is a triple: (command, target, value). See:

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html

<form name="loginform" action="homepage.asp" method="post">

 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login

</form>

Username:
Password:
 Login

Fig. 1. login.asp – Page and Source

“Login” the application shows the home page (homepage.asp).
If credentials are correct, the username (contained in a HTML
tag with the attribute ID="uname") and the logout button are
reported in the upper right corner of the home page (e.g.,
John.Doe). Otherwise, the Guest User and the login button are
shown.

As an example, we report a test case for this simple web
application built using the capture/replay facility of Selenium
IDE (see Fig. 2). The test script produced by Selenium
IDE performs a valid login, using correct credentials (i.e.,
username=John.Doe and password=123456) and verifies that
in the home page the user results to be correctly authenticated
(assertText, id=uname, John.Doe).

B. Programmable Web Testing

Programmable web testing is based on manual creation
of a test script. In web testing, a test script is a set of
instructions/commands written by the developer and executed
to test that the WAUT functions as expected. Web test script
can be written using ad-hoc languages/frameworks or general
purpose programming languages (such as, e.g., C++, Java, and
Ruby) with the aid of specific libraries able to act as a browser.
Usually, these libraries extend the programming language with
user friendly APIs, providing commands to, e.g., click a button,
fill a field and submit a form. Also in this case, scripts are
then completed with assertions (e.g., JUnit assertions if the
language chosen for implementing the test scripts is Java).

Test scripts built in this way are more flexible than test
scripts built using capture/replay tools. In fact, programming
languages allow developers to handle conditional statements (to
program multiple test cases with different, condition-dependent
behaviours), loops (to program repetitive web interactions,
repeated multiple times), logging, and exceptions directly in
the test script. They also support the creation of parameterized
(a.k.a., data-driven) test cases. Parameterized test cases are
test cases that are executed multiple times, each time passing
them different arguments (i.e., inputs and expected values).
Thus, in general, programmable web testing techniques can
handle the complexity of web software better than C&R
web testing techniques. Moreover, it is common opinion that
programmable test cases can be modified more easily than

Fig. 2. Selenium IDE test case

273

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver = driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.id("PW")).sendKeys(PW);
 driver.findElement(By.id("login")).click();
 return new HomePage(driver);
 }
}

public class HomePage {
 private final WebDriver driver;
 public HomePage(WebDriver driver) {this.driver = driver;}
 public String getUsername() {
 return driver.findElement(By.id("uname")).getText;
 }
}
 Fig. 3. LoginPage.java and HomePage.java page objects

C&R test cases. However, “everything has a price”. First, test
script development, to be effective, has to be subjected to
the same programming guidelines and best practices that are
applied to traditional software development (e.g., verifying the
script quality and using design patterns). Thus, to make an
effective use of programmable web testing, technical skills
and persons (i.e., code developers) are required. Second, a
remarkable initial effort is necessary to develop and fine tune
the test suite.

A tool for Web application testing belonging to this cat-
egory is Selenium WebDriver3. Selenium WebDriver is a
tool for automating web application testing that provides a
comprehensive programming interface used to control the
browser. WebDriver test cases are implemented manually
in a programming language integrating Selenium WebDriver
commands with JUnit or TestNG assertions (it is not tied to
any particular test framework). A best practice often used by
Selenium WebDriver testers is applying the page object pattern.

The page object pattern is used to model the web pages
involved in the test process as objects, employing the same
programming language used to write the test cases. In this way,
the functionalities offered by a web page become methods
exposed by the corresponding page object, which can be easily
called within any test case. Thus, all the details and mechanics
of the web page are encapsulated inside the page object.
Adopting the page object pattern allows the test developer
to work at a higher level of abstraction: the page object pattern
is used to reduce the coupling between web pages and test
cases. For these reasons, adopting the page object pattern is
expected to improve test suite maintainability [7].

As an example, we report two simple WebDriver test cases:
a successful authentication test case and an unsuccessful one.
The first is equivalent to the one seen for Selenium IDE (Fig. 2).
The second test case inserts invalid credentials and verifies that
in the home page no user has been authenticated (i.e., Guest
must be displayed in the home page).

The first step is to create two page objects (LoginPage.java
and HomePage.java) corresponding to the web pages login.asp
and homepage.asp respectively (see Fig. 3). The page object
LoginPage.java offers a method to log into the application.
That method takes in input a username and a password, inserts

3http://seleniumhq.org/projects/webdriver/

public void testLoginOK() {

 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("John.Doe","123456");
 // we are in the 'homepage.asp' page
 assertEquals("John.Doe", HP.getUsername());
 driver.close();
}

public void testLoginKO() {
 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("Inexistent","Inexistent");
 // we are in the 'homepage.asp' page
 assertEquals("Guest", HP.getUsername());
 driver.close();
}
 Fig. 4. TestLoginOK and TestLoginKO test cases

them in the corresponding input fields, clicks the Login button
and returns a page object of kind HomePage.java (because
after clicking the Login button the application moves to the
page homepage.asp). HomePage.java contains a method that
returns the username authenticated in the application or Guest
when no user is authenticated. In these page objects, we have
used the values of the id attributes to locate the HTML tags.

The second step is to develop the two test cases making use
of those page objects (see Fig. 4). Specifically, we can see that
in each test method: first, a WebDriver of type FirefoxDriver
is created allowing to control the Firefox browser as a real
user does (Selenium allows to instantiate also several other
browsers); second, the WebDriver (i.e., the browser) opens the
specified URL and creates the page object, that is an instance
of LoginPage.java, relative to the page login.asp; third, using
the method login(...) offered by the page object, a new page
object (HP) representing the page homepage.asp is created;
finally, the test case assertion can be checked using method
getUsername().

III. TEST CASE EVOLUTION

A. Test Repair

When a Web application evolves to accommodate require-
ment changes, bug fixes, or functionality extensions, test
cases may become broken (e.g., test cases may be unable
to locate some links, input fields and submission buttons),
and software testers have to repair them. This is a tedious
and expensive task since it has to be manually performed by
software testers (automatic evolution of test suites is far from
being consolidated [10]).

Depending on the kind of maintenance task that has been
performed on the target web application, a software tester has
to execute a series of test case repairment activities that can
be categorized, for the sake of simplicity, in two types: logical
and structural.

The first kind (logical) refers to major functional changes
which involve the modification of the web application logic.
This kind of change requires to change correspondingly the
logic of one or more test cases (e.g., modifying a series of
commands in a test case because the path to reach a certain

274

Web page has changed or the target functionality has changed).
An example of a change request (CR1) that necessitates of a
logical repairment activity is enforcing security by means of
stronger authentication. In order to prevent possible brute force
attacks, a new web page containing an additional question can
be added after the login.asp page of Fig. 1.

The second kind (structural) refers to a change at level of
page layout/structure only. For example (CR2), in the web
page of Fig. 1 the id of the password textbox may be changed
to PWD. Usually, the impact of a structural change is smaller
than a logical change. Often, it is sufficient to modify one or
more localization lines, i.e., lines containing locators that are
enclosed in page objects (assuming they are adopted).

The strategy used by a software tester to repair a test case
depends mainly on two factors: (1) the tool used to build the
test cases (C&R, like Selenium IDE, or programmable, like
Selenium WebDriver) and (2) the kind of change (logical or
structural).

Selenium IDE + structural change. The tester modifies,
directly in the Selenium IDE, the first broken action command
(i.e., the Selenese command that is highlighted in red after test
case execution), which can be a localization command or an
assertion. Then, the tester re-executes the test case, possibly
finding the next broken action command (if any). For example,
if CR2 is implemented then the test case in Fig. 2 needs to
be repaired. The tester has to replace PW with PWD in the
command highlighted in blue in Fig. 2.

Selenium IDE + logical change. The tester keeps the portion
of script up to the command that precedes the broken action
command, deletes the rest and captures the new execution
scenario by starting from the last working command. For
example, if CR1 is implemented then the assertion of the
test case shown in Fig. 2 fails and the tester has to delete it.
Then, the tester has to complete the test case starting from
the command clickAndWait, id=login and capturing the
new scenario, that includes the new web page providing the
additional authentication question.

Selenium WebDriver + structural change. The tester modifies
one or more page objects that the broken test case links to.
For example, if CR2 is implemented then the tester has to re-
pair the line: driver.findElement(By.id("PW")).send-
Keys(PW) in the LoginPage.java page object (see Fig. 3).

Selenium WebDriver + logical change. Depending on the
magnitude of the executed maintenance task, the tester has to
modify the broken test cases and/or the corresponding page
objects. In some cases, new page objects have to be created.
For example, if CR1 is implemented then the tester has to
create a new page object for the web page providing the
additional authentication question. Moreover, she has to repair
the testLoginOK test case in Fig. 4, adding a new Java
command that calls the method offered by the new page object.

B. Cost Benefit Analysis

We expect C&R test cases have a lower initial development
cost than programmable test cases, while this relationship is
reverted during test case evolution. Fig. 5 shows an example of

0 1 2 3 4 5 6 7 8 9 10

O
v
e

ra
ll

 C
o

s
t

Releases

 C&R

 Programmable

Fig. 5. Evolution costs for C&R and programmable test cases

such evolution costs. In the long run (after 5 releases, in Fig. 5),
the lower maintenance cost of programmable test cases pays
off, since the cumulative test case development and evolution
cost becomes lower for programmable than for C&R test cases.
The key point is to determine when such benefits are expected
to occur, i.e., to estimate the value of n, the release number
after which programmable test cases start to be cumulatively
more convenient than C&R ones.

Let us indicate by C0 and P0 the effort required for the
initial development of C&R and programmable test cases,
respectively, while C1, C2, . . . and P1, P2, . . . indicate the test
case evolution costs associated with the successive software
releases, numbered 1, 2, . . . We are seeking the lowest value n
such that: n∑

i=0

Ci ≥
n∑

i=0

Pi (1)

Under the assumption that Ci = C ′ ∀i > 0 and
that Pi = P ′ ∀i > 0, i.e., approximately the same test case
evolution effort is required for the software releases following
the initial one, either with C&R or with programmable test
cases, we can find the following solution to the equation above:

n =

⌊
P0 − C0

C ′ − P ′

⌋
(2)

After more than n releases, the cumulative cost of initial
development and evolution of programmable test cases is lower
than that of C&R test cases.

IV. EMPIRICAL ASSESSMENT

This section reports the design, objects, research questions,
metrics, procedure, results, discussion and threats to validity
of the empirical study conducted to compare C&R vs. pro-
grammable web testing. We follow the guidelines by Wohlin et
al. [15] on design and reporting of empirical studies in software
engineering.

A. Study Design

The goal of this study is to investigate the cost/benefit trade-
off of C&R vs. programmable test cases for web applications,
with the purpose of assessing both the short term and long
term (i.e., across multiple releases) effort involved in the two
scenarios. The cost/benefit focus regards the effort required

275

for the creation of the initial test suites from scratch, as well
as the effort required for their evolution across the successive
releases of the software. The results of this study are interpreted
according to two perspectives: (1) developers and project
managers, interested in data about the costs and the returns of
the investment associated with either C&R or programmable
web testing; (2) researchers, interested in empirical data about
the impact of different approaches to web testing. The context
of the study is defined as follows: the human subjects are
two Junior developers facing web testing, while the software
objects are six open source web applications under test.

B. Software Objects

We randomly selected and collected six open-source web
applications from SourceForge.net. We have included only
applications that: (1) are quite recent – thus they can work
without problems on the latest versions of Apache, PHP and
MySQL (the technologies we have chosen4); (2) are well-
known and used – some of them have been downloaded more
than one hundred thousand times last year; (3) have at least
two major releases (we have excluded minor releases because
probably with small differences between the applications the
majority of the produced test cases would work without
problems, and there is no reason to believe that the direction of
the results would be different although reduced in magnitude);
(4) belong to different application domains. Table I reports some
information about the selected applications. We can see that all
of them are quite recent (ranging from 2009 to 2013). On the
contrary, they are considerably different in terms of number of
source files (ranging from 46 to 840) and number of lines of
code (ranging from 4 kLOC to 285 kLOC, considering only the
lines of code contained in the PHP source files, comments and
blank lines excluded). The difference in lines of code (columns
4 and 8) gives a rough idea of how different the two chosen
releases are. In the following, we report a short description for
each of the selected applications.

MantisBT5 is a web based bug tracking system. Over time
it has matured and gained a lot of popularity, and now it has
become one of the most popular open source bug tracking
systems. MantisBT is developed in PHP, with support for
multiple database back ends.

PHP Password Manager (PPMA)6 is a web based password
manager. Each password is (DES-)encrypted with an individual
user password. It is based on the Yii Framework7.

Claroline8 is an Open Source software based on
PHP/MySQL. It is a collaborative learning environment
allowing teachers or education institutions to create and
administer courses through the web. The system provides group
management, forums, document repositories, calendar, chat,

4Since Selenium IDE and WebDriver implement a black-box approach, the
server side technologies used by the applications do not affect the results of
this study, hence considering only PHP web applications is not expected to
bias the results in any way.

5http://sourceforge.net/projects/mantisbt/
6http://sourceforge.net/projects/ppma/
7http://www.yiiframework.com/
8http://sourceforge.net/projects/claroline/

TABLE I. OBJECTS: WEB APPLICATIONS FROM SourceForge.net

Version Date File
a

kLOC
b Version Date File

a
kLOC

b

MantisBT 1.1.8 Jun-09 492 90 1.2.0 Feb-10 733 115

PPMA
c 0.2 Mar-11 93 4 0.3.5.1 Jan-13 108 5

Claroline 1.10.7 Dec-11 840 277 1.11.5 Feb-13 835 285

Address Book 4.0 Jun-09 46 4 8.2.5 Nov-12 239 30

MRBS 1.2.6.1 Jan-08 63 9 1.4.9 Oct-12 128 27

Collabtive 0.65 Aug-10 148 68 1.0 Mar-13 151 73

a
 Only PHP source files were considered

b
 PHP LOC - Comment and Blank lines are not considered

2nd Release1st Release

c
 Without considering the source code of the framework used by this application (Yii framework)

assignment areas, links, user profile administration on a single
and highly integrated package.

PHP Address Book9 is a simple, web-based address and
phone book, contact manager, and organizer.

Meeting Room Booking System (MRBS)10 is a system for
multi-site booking of meeting rooms. Rooms are grouped by
building/area and shown in a side-by-side view. Although the
goal was initially to book rooms, MRBS can also be used to
book any resource.

Collabtive11 is a web based collaboration software. The
software enables the members of geographically scattered teams
to collaboratively work.

C. Research Questions and Metrics

To achieve the goal of this study, we formulate and address
the following research questions:
RQ1: What is the initial development effort for the creation
of C&R vs. programmable test suites?
RQ2: What is the effort involved in the evolution of C&R vs.
programmable test suites when a new release of the software
is produced?
RQ3: Is there a point in time when the programmable test
suites become convenient with respect to the C&R test suites?

The first research question deals with the increased develop-
ment cost that is expected to occur when programmable web
tests are created. We want to verify that indeed there is an
increased cost when programmable web tests are developed and,
more importantly, we want to estimate the ratio between the
two costs. This would give developers and project managers a
precise idea of the initial investment (excluded tester training) to
be made if programmable test suites are adopted, as compared
to C&R test suites. The metrics used to answer research
question RQ1 is the ratio between initial development effort
of programmable test suites over the effort required by C&R
test suite. Effort is measured by the time developers spent in
creating the test suites.

The second research question involves a software evolution
scenario. We consider the next (major) release of the web
applications under test and we evolve the test suites so as to
make them applicable to the new software release. The test
case evolution effort for C&R and for programmable test suites
is measured as the time developers spend to update the test
suites to the new software version. The ratio between the two
effort measures gives a precise, quantitative indication of the

9http://sourceforge.net/projects/php-addressbook/
10http://sourceforge.net/projects/mrbs/
11http://sourceforge.net/projects/collabtive/

276

benefits provided by the more maintainable test suites. We
expect the programmable test suites to be more maintainable
than the C&R ones, hence this research question is about the
cost saving achieved in the long term, when programmable
test cases are expected to be more easily evolved than C&R
test cases.

The last research question is about the return on the initial
investment. Assuming that programmable test cases are initially
more expensive to create than C&R test cases, but are also
more easily maintained when the software evolves, we estimate
the number of releases after which C&R testing costs become
higher than programmable testing costs (see Fig. 5). To obtain
such estimate, we apply Equation (2).

D. Experimental Procedure

The experiment has been performed as follows:
– Six open-source web applications have been selected from
SourceForge.net as explained in Section IV-B.
– For each selected application, two equivalent test suites
(Selenium IDE and Selenium WebDriver) have been built by
the first two authors of this paper working in pair-programming
and adopting a systematic approach. They can be considered
junior developers: one is a PhD student and the other one is a
master student with 1-year industrial experience as software
tester [7]. We measured the development effort for the creation
of the two test suites as clock time (in minutes). To balance
as much as possible learning effects, we decided to alternate
the order of test suite production and repairment

To produce the test cases we followed a systematic approach
consisting of the following two steps: (1) we discovered the
main functionalities from the available documentation of the
applications; (2) we covered each discovered functionality with
at least one test case (we assigned a meaningful name to it, so
as to keep the mapping between test cases and functionalities).
For both approaches, we followed the proposed best practices12,
i.e., for Selenium IDE we used the suggested locators and took
advantage (when appropriate) of the suggested assertions; for
Selenium WebDriver we used the page object pattern and the
ID locators when possible (i.e., when HTML tags are provided
with IDs), otherwise Name, LinkText, CSS and XPath locators
were used. The two test suites are equivalent because the
included test cases are developed to test exactly the same
functionalities using the same locators, the same sequences of
actions and the same input data. Column 1 of Table II reports
the number of test cases in both test suites.
– Each test suite has been executed against the second release
of the Web applications. First, we recorded the failed test cases
and then, in a second phase, we repaired them. We measured
the repair effort as clock time (in minutes).
– The results obtained for each test suite are compared (Se-
lenium IDE vs. Selenium WebDriver), with the purpose of
answering our research questions. On the results, we conduct
both a quantitative analysis (e.g., computing n as reported in

12see http://seleniumhq.org/projects/ide/ and
http://seleniumhq.org/projects/webdriver/

TABLE II. TEST SUITES DEVELOPMENT

Sel
b

Java
c

Test
c

PO
c

Total
c # PO

MantisBT 41 181 383 < 0.01 536 2825 1577 1054 2631 30

PPMA 23 68 98 0.01 475 1780 867 346 1213 6

Claroline 40 161 239 < 0.01 619 2932 1564 1043 2607 22

Address Book 28 77 153 < 0.01 482 2074 1078 394 1472 7

MRBS 24 79 133 < 0.01 476 1946 949 372 1321 8

Collabtive 40 291 383 < 0.01 555 2787 1565 650 2215 8

a
 Minutes

b
 Selenese LOC

c
 Java LOC - Comment and Blank lines are not considered

Number

of Test

Cases

IDE WebDriver
IDE

Web

Driver

CodeTime
a

p-value

Equation (2)) and a qualitative analysis (e.g., reporting the
lessons learned during test suite evolution, the specific traits of
the testing techniques when applied to each Web application,
the advantages of the page object pattern, etc.).

E. Results

RQ1. Table II reports some general information about the
developed test suites. For each application, it reports: the
number of test cases composing the test suites (column 1), the
time required to develop them (columns 2 and 3), the statistical
difference of the two distributions test suite development time
IDE and test suite development time WebDriver (column 4)
computed using the Wilcoxon paired test and their size in lines
of code (columns 5-9)13. The last column contains the number
of page objects (PO) for each WebDriver test suite13. The
development of the Selenium IDE test suites required from 68
to 291 minutes, while the Selenium WebDriver suites required
from 98 to 383 minutes. In all the six cases, the development of
the Selenium WebDriver test suites required more time than the
Selenium IDE test suites. The first column of Table IV shows
the ratio between the time required to develop a WebDriver
test suite and the corresponding time for the IDE test suite. A
value greater than one means that the Selenium WebDriver test
suite required more development time than the corresponding
Selenium IDE test suites. The extreme values are: Collabtive
with 1.32 and MantisBT with 2.12. According to the Wilcoxon
paired test (see column 4 of Table II), the difference in test suite
development time between IDE and WebDriver is statistically
significant (with α = 0.05) for all test suites. Summarizing,
with regards to the research question RQ1 we can say that, for
all the considered applications, the initial development effort
for the creation of C&R test suites was lower than the one for
programmable test suites.

For what concerns the size of the test suites, we report
in Table II (column 5) the size of the Selenium IDE test
suites, ranging from 475 (PPMA) to 619 (Claroline) Selenese
LOCs2 and the number of corresponding Java lines (column 6)
obtained using the “export in Java” functionality provided by
the Selenium IDE tool. We can notice that, the generated Java
code does not adopt the page object pattern that, among other
benefits, helps to reduce the amount of duplicated code. The
size of the Selenium WebDriver test suites, ranging from 1213
(PPMA) to 2631 (MantisBT) Java LOC, is reported in column 9
(Total) of Table II. We can notice that, in all the cases, the

13The number of LOC and page objects refer to the test suites built for the
newer release of each application.

277

TABLE III. TEST SUITES REPAIRING

MantisBT 113 33 / 41 18 67 / 479 95 32 / 41 36 29 / 106 0.05

PPMA 71 23 / 23 12 168 / 388 55 17 / 23 21 24 / 42 < 0.01

Claroline 94 40 / 40 3 129 / 535 46 20 / 40 3 30 / 126 < 0.01

Address Book 92 28 / 28 42 100 / 375 54 28 / 28 38 14 / 54 < 0.01

MRBS 120 24 / 24 32 189 / 514 72 23 / 24 23 29 / 51 < 0.01

Collabtive 114 32 / 40 1 74 / 444 79 23 / 40 1 36 / 108 0.10

b
 Number of Locators changed over the total number of Locators in the test suite

p-value

a
 Minutes

Logical

Changes

Structural

Changes
b Time

a Test

Repaired

Test

Repaired
Time

a Logical

Changes

Structural

Changes
b

IDE WebDriver

majority of the code is devoted to the test case logics, while
only a smaller part is devoted to the implementation of the
page objects. Finally, it is interesting to notice that the number
of page objects, with respect to the number of test cases, varies
considerably depending on the application (see column 10).
For instance, MantisBT required 30 page objects for its 41
test cases (that corresponds to 0.73 page objects per test case),
while Collabtive required only 8 page objects for 40 test cases
(i.e., 0.20 page objects per test case). We analyse in depth the
reasons and the consequences of having a different number of
page objects per test case in Section IV-F.

RQ2. Table III shows some information about the test
suites repairing process. In detail, the table reports, for each
application, the time required to repair the test suites (IDE and
WebDriver), the number of repaired test cases over the total
number of test cases and (last column) the statistical difference
of the two distributions test suite repairing time IDE and test
suite repairing time WebDriver computed using the Wilcoxon
paired test. Selenium IDE test suites required from 71 to 120
minutes to be repaired, while Selenium WebDriver test suites
required from 46 to 95 minutes. For all the applications: (1) the
repairing time of the Selenium IDE test suites was longer than
the repairing time of the Selenium WebDriver test suites; and,
(2) the number of repaired Selenium IDE test cases is greater
or equal to the number of repaired Selenium WebDriver test
cases. The second column of Table IV shows the ratio between
the time required to repair a WebDriver test suite and the
time required to repair an IDE test suite. The extreme values
are: Claroline (0.49) and MantisBT (0.84). According to the
Wilcoxon paired test, the difference in test suite evolution time
between IDE and WebDriver is statistically significant (with
α = 0.05) for all test suites except for Collabtive (see Table III).
Summarizing, with regards to the research question RQ2 we
can say that, for five out of six considered applications, the
effort involved in the evolution of C&R test suites, when a
new release of the software is produced, is greater than for
programmable test suites.

Globally, in the six test suites, we have approximately the
same number of modifications made to address logical changes
(i.e., 108 and 122 respectively in Selenium IDE and WebDriver),
but we can observe a huge difference in terms of modified
locators to repair the broken test cases due to structural changes
(respectively 727 out of 2735 locators changed with IDE vs. 162
out of 487 locators changed with WebDriver). In fact, adopting
the page object pattern avoids the duplication of locators as well
as the need for their repeated, consistent evolution. Moreover,
we observed that for the six Selenium IDE test suites less than

TABLE IV. EVOLUTION COSTS OF THE SELECTED APPLICATIONS

Development Repair

MantisBT 2,12 0,84 11,22 0 Y, 8 M 8 Y, 0 M 0,73

PPMA 1,44 0,77 1,88 1 Y, 9 M 3 Y, 4 M 0,26

Claroline 1,48 0,49 1,63 1 Y, 2 M 1 Y, 10 M 0,55

Address Book 1,99 0,59 2,00 3 Y, 4 M 6 Y, 9 M 0,25

MRBS 1,68 0,60 1,13 4 Y, 8 M 5 Y, 3 M 0,33

Collabtive 1,32 0,69 2,63 2 Y, 6 M 6 Y, 7 M 0,20

a
 We have not rounded n to show exact values

WebDriver / IDE (Time)
n

a Inter-release

Time

Inter-release

Time * n
a

PO per

Test Case

2% of the 459 ID locators were broken, while roughly 12-20%
of the 655 Name, 473 LinkText and 357 CSS locators had to
be repaired and 60% of the 791 XPath locators (percentages
are very similar for the Selenium WebDriver test suites).

RQ3. In Table IV we computed n as reported in Equation (2)
(see Section III-B). In five cases out of six, the cumulative
cost of the initial development and evolution of programmable
test cases (i.e., using Selenium WebDriver) is lower than that
of C&R test cases (i.e., using Selenium IDE) after a small
number of releases (more precisely between 1 and 3, see
column 3 in Table IV). In the case of MantisBT, the same
results can be obtained after about 11 releases. We discuss on
the reasons behind these results in Section IV-F. Summarizing,
with regards to the research question RQ3 we can say that in
most cases adopting a programmable approach (as Selenium
WebDriver) is convenient after a small number of releases.

F. Discussion

The key findings of our empirical study indicate that, for
web applications, programmable test cases are more expensive
to write from scratch than C&R test cases, with a median ratio
between the two costs equal to 1.58. During software evolution,
test suite repair is substantially cheaper for programmable test
cases than for C&R test cases, with a median ratio equal to
0.65. Such cost/benefit trade-off becomes favourable to the
programmable test suites after a small number of releases
(estimated using Equation (2)), the median of which is 1.94.
The most important practical implication of these results is
that for any software project which is expected to deliver 2
or more releases over time, programmable test cases offer an
advantageous return of the initial investment. In fact, after
2 or more releases, the evolution of the test suites will be
easier and will require less effort if a programmable approach
(such as WebDriver) is adopted. However, specific features of
a given web application might make the trade-off more or less
favourable to programmable tests. In particular, the possibility
to capture reusable abstractions in page objects plays a major
role in reducing the test evolution effort for programmable test
cases. In the following, we analyse each factor which may
affect the trade-off between C&R and programmable test cases.

Summary: In general, programmable test cases are more
expensive to write but easier to evolve than C&R ones,
with an advantage after 2 releases (in the median case).

1) Number of Page Objects per Test Case: As seen in
Section IV-E, the number of page objects per test case varies
considerably among the considered applications (from 0.20 to
0.73 page objects per test case). This number gives an indication

278

of the degree of reuse that page objects have across test cases,
and a higher reuse is of course expected to be associated
with a lower maintenance effort, since reused page objects
will be maintained once for all their clients. The variability
observed for the objects used in our study is due to different
characteristics of these applications. From this point of view,
the worst case is MantisBT with 0.73 page objects per test case.
This could explain the high value of n (i.e., 11) estimated for
this application. Often, when a test case (e.g., test case: “create
a new user”) is executed, MantisBT shows several different
and function-specific pages (e.g., a page to insert the new user
data, a page to confirm the user creation, etc.), with almost
no page reuse when similar functionalities are exercised. Thus,
in MantisBT, each test case is required to create often a test-
specific page object, associated with the functionality being
exercised. In this application, the low degree of reuse of web
pages corresponds to the highest observed number of pages
objects per test case.

Analysing in more detail the dependencies between test cases
and page objects, we can notice that: (1) in the MantisBT
Selenium WebDriver test suite there are few page objects
(i.e., 23%) used by a large number of test cases (only 7 page
objects are used by more than 10 test cases); and, (2) a lot
of page objects (i.e., 56%) are used by only 1 or 2 test cases
(respectively 6 and 11 page objects). This is an aspect that can
reduce the benefits of adopting the page object pattern. For
instance, in the case of MantisBT we have that 14 page objects
(among 17) are used by only one or two test cases that have
been repaired. In these cases, we have few advantages in terms
of maintenance effort reduction from adopting the page object
pattern, since each repair activity on a page object, done just
once, affects only one or at most two test cases.

However, a high number of page objects per test case is
not strictly correlated with high values of n. In fact, in the
Claroline test suite we have 0.55 page objects per test case (a
value slightly lower than MantisBT) but here the value of n
is low (i.e., 1.63). This different result can be explained by
analysing the dependencies among test cases and page objects:
(1) in Claroline we have 13 page objects repaired out of a total
of 20 (i.e., 65%) compared to 24 page objects repaired out of
30 of MantisBT (i.e., 80%); (2) the page objects repaired in
Claroline are usually more used (on average, each of them is
used by 12 test cases) than the ones of MantisBT (on average,
each of them is used by 7 test cases); and, (3) in the Claroline
test suite, only 4 page objects used by no more than two test
cases have been repaired (in MantisBT they are 14).

Summary: The web page modularity of the web application
under test affects the benefits of programmable test cases.
Web applications with well modularized functionalities,
implemented through reusable web pages, are associated
with reusable pages objects that are maintained just once
during software evolution.

2) Number of Test Cases Repaired: From Table III we can
notice that in 5 cases out of 6, the number of repaired test
cases is lower when Selenium WebDriver is used. At first

sight, this result could appear strange since each pair of test
suites (IDE and WebDriver) has been developed equivalently,
using the same locators. Actually, the number of broken test
cases is equal for each pair of test suites, but the number of
repaired test cases is lower with Selenium WebDriver because
of the adoption of the page object pattern. With the page object
pattern an offered method can be reused more times in a test
suite. Thus, a change at the level of the page object can repair
more than one test case at once. Clearly, the reduction of the
number of repaired test cases is correlated with the number of
times a method in a page object is (re-)used.

Let us consider a specific example. In Claroline, between
the two considered releases a modification of the part of the
application managing the login process occurred. Since this
modification involved also the attribute used to locate the user
credentials submission button, all the test cases were impacted
(since all of them start with the authentication). In the Selenium
WebDriver Test suite we repaired only the page object offering
the method DesktopPage login(String user, String

pass). In this way, we automatically resolved the problem for
the entire test suite. On the contrary, in the Selenium IDE test
suite, we had to modify all the test cases (i.e., 40 test cases). A
similar problem occurred also in MRBS and PasswordManager.

Summary: Page object reuse reduces dramatically the test
repair effort.

3) Mapping n to Calendar Time: In Section IV-E we have
estimated the value of n. Since we know the dates of each
release (see Table I), we can easily calculate the inter-release
time (see Table IV). By multiplying the inter-release time
by n we obtain a value expressed in years and months that
approximates the time point in which the cumulative cost for
using a programmable Web testing approach becomes lower
than the one for adopting a C&R approach. As reported in
Table IV), for the six considered applications, this value ranges
from 1 year and 10 months to 8 years, with a median of 6 years.
Even if these values could appear quite high, it is important to
notice that they correspond to small values of n and high values
of inter-release time. This is due to the fact that the selected
Web applications are quite mature and consolidated, and thus,
they receive major updates rarely. If a testing approach is
adopted from the very beginning of a software project, when
the inter-release time is low, the benefits of the programmable
test cases will be observed much earlier, since a value of n
equal to 2 will correspond to a relatively small calendar time.
To choose the best approach between programmable and C&R
web testing, the project manager should estimate the expected
number of major releases that will be produced in the future
and their supposed inter-release time.

Summary: The benefits of programmable test cases are
maximized if they are adopted in the early stages of a
software project, when the inter release time is low.

4) Other Selenium WebDriver Advantages: As already
mentioned, Selenium WebDriver offers a comprehensive pro-
gramming interface and so a higher flexibility as compared

279

to Selenium IDE. For example, it allows developers to create
test cases enriched with functionalities that natively Selenium
IDE does not provide, such as: conditional statements, loops,
logging, exception handling, and parameterized test cases. In
this experimental work we have not used these features to
render fairer the comparison between the two approaches and
thus having equivalent test suites, but a project manager should
consider also these features when selecting between the two
testing approaches. In a previous work [7], we found that these
features are indeed quite useful in industrial projects.

Summary: Additional benefits of programmable test cases
(e.g., parametric test cases) should be taken into account
when choosing between programmable and C&R web
testing.

G. Threats to Validity

The main threats to validity that affect our results are internal,
construct and external validity threats [15].

Internal validity threats concern factors that may affect a
dependent variable (development and repair time of the test
suites and value of n) and were not considered in the study.
One such factor is associated with the systematic approach used
to produce the test cases (i.e., the chosen functional coverage
criteria). Moreover, the variability involved in the selection of
input data and of the used locators could have played a role. To
mitigate this threat, we have applied all known good-practices
in the construction of the IDE and WebDriver test suites.
Finally, learning effects may have occurred during the test
suites development/repairment phases even if we tried to limit
them with the specific procedure described in Section IV-D.

Construct validity threats concern the relationship between
theory and observation. It is possible that measuring the time
spent during production and repair of the test suites, and
measuring the cumulative cost of initial development and
evolution of test cases, does not provide the best means to
compare the two approaches. In particular, Equation (2) is
based on a simple linear model, whose parameters have been
estimated using only two consecutive releases. To reduce this
threat, we have carefully chosen the delta between the base
release and the next one to be representative of the typical
changes between releases for the selected objects. Moreover,
since the manual effort available for testware evolution was
limited, we preferred to allocate it on a higher number of
applications than on a higher number of releases of a smaller
set of applications. The development/repair time of the test
suites was reported on time sheets. Even if this way to measure
the time dependent variable can be considered questionable, this
practice is very common in the empirical software engineering
community. Finally, the test suites have been developed/repaired
by two authors of this paper. Thus, researcher bias is a potential
threat to the validity of this study. However, it is important
to highlight that, since both tools are open source and we
were not involved in their development, the authors have no
reasons to favour any particular approach or interest to obtain
any particular result (biasing the results). To reduce this threat,

we have carefully designed and followed the experimental
procedure described in Section IV-D. We chose to conduct a
case study with only two software testers instead of a controlled
experiment with many students (which would have overcome
the researcher bias threat), because employing people without
experience in Web testing would have probably benefited the
simpler and easier to learn approach, C&R.

Conclusion validity concerns the relationship between the
treatment and the outcome. We chose to use a non-parametric
test (Wilcoxon paired test) due to the size of the sample and
because we could not safely assume normal distributions.

External validity threats are related to the generalization
of results. The selected applications are real open source
Web applications belonging to different domains. This makes
the context quite realistic, despite further studies with other
applications are necessary to confirm or confute the obtained
results. The test suites are small but realistic and have been
built using a systematic approach. In the discussion of the
experimental results, we have analysed in depth the factors
which may affect our findings when applied to a different
context. Another threat to external validity is that the results are
limited to Selenium IDE and WebDriver, and different results
could be obtained with other Web testing frameworks/tools.

V. RELATED WORKS

We will focus our related work on empirical studies about
test suite evolution and partially on automatic repairing of test
cases.

Berner et al. [1] describe their experiences on testing
automation, gained participating in several industrial projects. In
particular, they focus on: advantages of automated testing w.r.t.
manual testing and difficulties encountered by practitioners
to automatize test cases. The main findings of this work can
be summarized in a number of interesting lessons learned
about test automation. Two of them are: (1) the number of
times a test suite is executed in its life span is correlated
with cost effectiveness of automated tests and this number can
help in the decision between automated and manual testing,
and (2) maintenance tends to have a much bigger impact on
the overall cost for testing than the initial implementation
of automated tests. Concerning the first lesson learnt, it is
obvious that the initial cost is higher when test automation is
adopted, since it is necessary to develop the automated test
suite. On the contrary, with manual testing it is sufficient to
prepare the test’s steps. But every time the test cases are re-
executed the costs are higher if this is done manually. The
authors report that, generally, each test case that is expected
to be executed more than ten times is a potential candidate for
automation. Concerning the second lesson learnt, we completely
agree with it. Indeed, our results confirm that, after a small
number of releases (i.e., n), the smaller overall cost for test
automation is obtained by adopting the approach that, as
much as possible, minimize the maintenance cost (i.e., the
programmable approach).

Collins and de Lucena [3] describe their experience in test
automation during the agile development of a web application.

280

They built the automated test suite using Selenium IDE. In the
first phases of their project, they tried to automate the testing
process as much as possible. However, as often happen at the
beginning of a new project, the web pages were frequently
updated because they were not able to meet users’ needs. As a
consequence, the test team had to re-record and re-write the test
cases very often. In this way, the testing process was too time
consuming, so they decided to limit the usage of automated
test cases to only “stable” web pages, with the drawback of
reducing the automated test suites coverage. Considering the
results we obtained, we believe that the adoption of Selenium
WebDriver (plus page object pattern) would have limited this
problem since it allows to reduce the effort of repairing the
test suites.

It is well-known that maintaining automated test cases is
expensive and time consuming (costs are more significant
for automated than for manual testing [14]), and that often
test cases are discarded by software developers due to huge
maintenance costs. For this reason, several researchers proposed
techniques and tools for automatically repairing test cases. For
instance, Mirzaaghaei et al. [11] presents TestCareAssistant
(TcA), a tool that combining data-flow analysis and program
differing, automatically repairs test compilation errors caused
by changes in the declaration of method parameters. Other
tools for automatically repairing GUI test cases or reducing
effort during maintenance have been presented in literature [16],
[6], [8]. Choudhary et al. [2] extend these proposals to Web
applications, presenting a technique able to automatically
suggest repairs for web application test cases.

VI. CONCLUSIONS AND FUTURE WORK

We have conducted an empirical study to compare the costs
and benefits of two alternative approaches to web testing: C&R
web testing vs. programmable web testing. Results collected
on six real web applications indicate that programmable tests
involve higher development (between 32% and 112%) but
lower maintenance effort (with a saving between 16% and
51%) than C&R tests. We have estimated the number of
releases after which the maintenance cost savings overcome
the initially higher development investment. According to our
linear estimate, after two major releases, programmable test
cases become more convenient than C&R ones. However,
the actual benefits depend on specific features of the web
application, including its degree of modularity, which maps to
reusable page objects that need to be evolved only once, when
programmable test cases are used. Another relevant factor is
the time when programmable test cases are adopted, with early
adoption associated with the highest benefits. It should be finally
noticed that the benefits we measured do not include useful
features of programmable test cases, such as the possibility
to define parametric and repeated test scenarios, which might
further amplify the advantages of programmable test cases.

In our future work, we plan to investigate the possibility
to join the advantages of C&R web tests (ease of initial
development) with those of programmable test cases (ease
of evolution). On the one hand, we will reduce the effort for

the definition of the page objects, by trying to generate them
automatically. On the other hand, we will refactor the C&R test
cases so as to make them similar to the programmable ones by,
e.g., introducing the use of page objects in the interactions with
the web application under test. We plan also to replicate our
study on visual web testing tools based on image recognition
(in particular, Sikuli Script14 and Sikuli API15, respectively as
C&R and programmable tool). Finally, we intend to replicate
our empirical study as a controlled experiment with professional
developers, in order to confirm (or confute) the obtained results.

REFERENCES

[1] S. Berner, R. Weber, and R. Keller. Observations and lessons learned from
automated testing. In Proceedings of the 27th International Conference
on Software Engineering, ICSE 2005, pages 571–579. IEEE, 2005.

[2] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web
application test repair. In Proceedings of the 1st International Workshop
on End-to-End Test Script Engineering, ETSE 2011, pages 24–29. ACM,
2011.

[3] E. Collins and V. de Lucena. Software test automation practices in agile
development environment: An industry experience report. In Proceedings
of the 7th International Workshop on Automation of Software Test, AST
2012, pages 57–63. IEEE, 2012.

[4] G. A. Di Lucca, A. R. Fasolino, F. Faralli, and U. de Carlini. Testing
web applications. In Proceedings of the 18th International Conference
on Software Maintenance, ICSM 2002, pages 310–319, 2002.

[5] S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leveraging user-session
data to support web application testing. IEEE Transactions on Software
Engineering (TSE), 31(3):187–202, 2005.

[6] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-
directed test scripts. In Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pages 408–418. IEEE, 2009.

[7] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites
maintainability with the page object pattern: an industrial case study. In
Proceedings of the 6th International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2013, pages 108–113.
IEEE, 2013.

[8] A. M. Memon. Automatically repairing event sequence-based GUI test
suites for regression testing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(2):4:1–4:36, Nov. 2008.

[9] A. Mesbah and A. van Deursen. Invariant-based automatic testing of
ajax user interfaces. In Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pages 210–220, 2009.

[10] M. Mirzaaghaei. Automatic test suite evolution. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European conference on
Foundations of Software Engineering, ESEC/FSE 2011, pages 396–399.
ACM, 2011.

[11] M. Mirzaaghaei, F. Pastore, and M. Pezze. Automatically repairing test
cases for evolving method declarations. In Proceedings of the 26th
International Conference on Software Maintenance, ICSM 2010, pages
1–5. IEEE, 2010.

[12] F. Ricca and P. Tonella. Analysis and testing of web applications.
In Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, pages 25–34, 2001.

[13] F. Ricca and P. Tonella. Detecting anomaly and failure in web applications.
IEEE MultiMedia, 13(2):44–51, 2006.

[14] M. Skoglund and P. Runeson. A case study on regression test suite
maintenance in system evolution. In Proceedings of the 20th International
Conference on Software Maintenance, ICSM 2004, pages 438–442. IEEE,
2004.

[15] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

[16] Q. Xie, M. Grechanik, and C. Fu. Rest: A tool for reducing effort
in script-based testing. In 24th International Conference on Software
Maintenance, ICSM 2008, pages 468–469. IEEE, 2008.

14http://www.sikuli.org/
15http://code.google.com/p/sikuli-api/

281

