
Copyright:

© 2014 Springer International Publishing Switzerland

The final publication is available at link.springer.com

Visual vs. DOM-based Web Locators:

An Empirical Study

Maurizio Leotta, Diego Clerissi, Filippo Ricca, Paolo Tonella

Abstract:

Automation in Web testing has been successfully supported by DOM-based tools that allow

testers to program the interactions of their test cases with the Web application under test.

More recently a new generation of visual tools has been proposed where a test case interacts

with the Web application by recognising the images of the widgets that can be actioned upon

and by asserting the expected visual appearance of the result.

In this paper, we first discuss the inherent robustness of the locators created by following the

visual and DOM-based approaches and we then compare empirically a visual and a DOM-

based tool, taking into account both the cost for initial test suite development from scratch

and the cost for test suite maintenance during code evolution. Since visual tools are known to

be computationally demanding, we also measure the test suite execution time.

Results indicate that DOM-based locators are generally more robust than visual ones and that

DOM-based test cases can be developed from scratch and evolved at lower cost. Moreover,

DOM-based test cases require a lower execution time. However, depending on the specific

features of the Web application under test and its expected evolution, in some cases visual

locators might be the best choice (e.g., when the visual appearance is more stable than the

structure).

Digital Object Identifier (DOI):

http://dx.doi.org/10.1007/978-3-319-08245-5_19

Visual vs. DOM-based Web Locators:
An Empirical Study

Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1, Paolo Tonella2

1 DIBRIS, Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

maurizio.leotta@unige.it, diego.clerissi@gmail.com,
filippo.ricca@unige.it, tonella@fbk.eu

Abstract. Automation in Web testing has been successfully supported by DOM-
based tools that allow testers to program the interactions of their test cases with
the Web application under test. More recently a new generation of visual tools has
been proposed where a test case interacts with the Web application by recognising
the images of the widgets that can be actioned upon and by asserting the expected
visual appearance of the result.
In this paper, we first discuss the inherent robustness of the locators created by
following the visual and DOM-based approaches and we then compare empirically
a visual and a DOM-based tool, taking into account both the cost for initial test
suite development from scratch and the cost for test suite maintenance during code
evolution. Since visual tools are known to be computationally demanding, we also
measure the test suite execution time.
Results indicate that DOM-based locators are generally more robust than visual
ones and that DOM-based test cases can be developed from scratch and evolved
at lower cost. Moreover, DOM-based test cases require a lower execution time.
However, depending on the specific features of the Web application under test and
its expected evolution, in some cases visual locators might be the best choice (e.g.,
when the visual appearance is more stable than the structure).

1 Introduction
The importance of test automation in Web engineering comes from the widespread
use of Web applications (Web apps) and the associated demand for code quality. Test
automation is considered crucial for delivering the quality levels expected by users [14],
since it can save a lot of time in testing and it helps developers to release Web apps with
fewer defects [1]. The main advantage of test automation comes from fast, unattended
execution of a set of tests after some changes have been made to a Web app.

Several approaches can be employed to automate functional Web testing. They can be
classified using two main criteria: the first concerns how test cases are developed, while,
the second concerns how test cases localize the Web elements (i.e., GUI components)
to interact with, that is what kind of locators (i.e., objects that select the target web
elements) are used. Concerning the first criterion, it is possible to use the capture-
replay or the programmable approach. Concerning the second criterion, there are three
main approaches, Visual (where image recognition techniques are used to locate GUI

components and a locator consists of an image), DOM-based (where Web page elements
are located using the information contained in the Document Object Model and a locator
is, for instance, an XPath expression) and Coordinates-based (where screen coordinates
of the Web page elements are used to interact with the Web app under test). This
categorization will be deeply analysed in the next section.

For developers and project managers it is not easy to select the most suitable auto-
mated functional web testing approach for their needs among the existing ones. For this
reason, we are carrying out a long term research project aimed at empirically investi-
gating the strengths and weaknesses of the various approaches (see also our previous
work [9]).

In this work we evaluate and compare the visual and DOM-based approaches con-
sidering: the robustness of locators, the initial test suite development effort, the test
suite evolution cost, and the test suite execution time. Our empirical assessment of the
robustness of locators is quite general and tool independent, while the developers’ effort
for initial test suite development and the effort for test suite evolution were measured
with reference to specific implementations of the two approaches. We instantiated such
analysis for two specific tools, Sikuli API and Selenium WebDriver, both adopting the
programmable approach but differing in the way they localize the Web elements to
interact with during the execution of the test cases. Indeed, Sikuli API adopts the visual
approach, thus using images representing portions of the Web pages, while Selenium
WebDriver employs the DOM-based approach, thus relying on the HTML structure. We
selected six open source Web apps and for each tool, we first developed a test suite per
application and then we evolved them to a subsequent version. Moreover, since visual
tools are known to be computational demanding, we also measured and compared the
test suite execution time.

The paper is organized as follows: Sect. 2 gives some background on test case
development using the visual and the programmable approaches, including examples for
the two specific tools used in this work. In the same section, we describe test case repair
activities. Sect. 3 describes our empirical study, reports the obtained results and discusses
the pros and cons of the two considered approaches. We then present the related works
(Sect. 4), followed by conclusions and future work (Sect. 5).

2 Background
There are several approaches for functional Web testing [13] and the choice among them
depends on a number of factors, including the technology used by the Web app and
the tools (if any) used for Web testing. Broadly speaking, there are two main criteria
to classify the approaches to functional Web testing that are related to: (1) test case
construction; and, (2) Web page element localisation.
For what concerns the first criterion, we can find two main approaches:
1) Capture-Replay (C&R) Web Testing: this approach consists of recording the actions

performed by the tester on the Web app GUI and generating a script that provides
such actions for automated, unattended re-execution.

2) Programmable Web Testing: this approach aims at unifying Web testing with tra-
ditional testing, where test cases are themselves software artefacts that developers
write, with the help of specific testing frameworks. For Web apps, this means that the

framework supports programming of the interaction with a Web page and its elements,
so that test cases can, for instance, automatically fill-in and submit forms or click on
hyperlinks.

An automated functional test case interacts with several Web page elements such as
links, buttons, and input fields, and different methods can be employed to locate them.
Thus, concerning the second criterion, we can find three different cases1:
1) Coordinate-based localisation: first generation tools just record the screen coordinates

of the Web page elements and then use this information to locate the elements during
test case replay. This approach is nowadays considered obsolete, because it produces
test cases that are extremely fragile.

2) DOM-based localisation: second generation tools locate the Web page elements using
the information contained in the Document Object Model. For example, the tools
Selenium IDE and WebDriver employ this approach and offer several different ways
to locate the elements composing a Web page (e.g., ID, XPath and LinkText).

3) Visual localisation: third generation tools have emerged recently. They make use of
image recognition techniques to identify and control GUI components. The tool Sikuli
API belongs to this category.

In our previous work [9], we compared the capture-replay approach and the pro-
grammable approach using two 2nd generation tools: Selenium IDE and Selenium
WebDriver. In this work, we fixed the test case definition method (i.e., programmable)
and changed the locator type, with the aim of comparing the visual approach and the
DOM-based approach. Empirical results refer to two specific programmable tools: Sikuli
API and Selenium WebDriver.

Let us consider a running example, consisting of a typical login web page (login.asp).
The login page requires the users to enter their credentials, i.e., username and password
(see Fig. 1). After having inserted the credentials and clicked on “Login”, the application
shows the home page (homepage.asp). If credentials are correct, the username (contained
in an HTML tag with the attribute ID="uname") and the logout button are reported in
the upper right corner of the home page (e.g., John.Doe). Otherwise, Guest User and
login button are shown. For the sake of simplicity, the application does not report any
error message in case of invalid credentials or unrecognised users.

2.1 Programmable Web Testing

Programmable Web testing is based on manual creation of a test script. Web test scripts
can be written using ad-hoc languages and frameworks or general purpose programming
languages (such as Java and Ruby) with the aid of specific libraries able to play the
role of the browser. Usually, these libraries extend the programming language with user
friendly APIs, providing commands to, e.g., click a button, fill a field and submit a form.

1 http://jautomate.com/2013/08/22/730/

<form name="loginform" action="homepage.asp" method="post">
 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login
</form>

Username:
Password:
 Login

Fig. 1. login.asp – Page and Source

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver=driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.xpath("./input[2]")).sendKeys(PW);
 driver.findElement(By.linkText("Login")).click();
 return new HomePage(driver);
 }
}

public class HomePage {
 private final WebDriver driver;
 public HomePage(WebDriver driver)
 {this.driver = driver;}
 public String getUsername() {
 return
 driver.findElement(By.id("uname")).getText;
 }
}

Fig. 2. LoginPage and HomePage page objects in Selenium WebDriver

Test scripts are completed with assertions (e.g., JUnit assertions if the language chosen
is Java).

A best practice often used when developing programmable test cases is the page
object pattern. This pattern is used to model the Web pages involved in the test process
as objects, employing the same programming language used to write the test cases. In
this way, the functionalities offered by a Web page become methods exposed by the
corresponding page object, which can be easily called within any test case. Thus, all the
details and mechanics of the Web page are encapsulated inside the page object. Adopting
the page object pattern allows the test developer to work at a higher level of abstraction
and it is used to reduce the coupling between Web pages and test cases, and the amount
of duplicate code. For these reasons, the adoption of the page object pattern is expected
to improve the test suite maintainability and evolvability [8].

DOM-based Programmable Test Case Creation: The tool for Web app testing be-
longing to the DOM-based/Programmable category that we used in this work is Se-
lenium WebDriver release 2.25.0 (in the following shortly referred to as WebDriver -
http://seleniumhq.org/projects/webdriver/). WebDriver is a tool for automating Web app
testing that provides a comprehensive programming interface used to control the browser.
WebDriver test cases are implemented manually in a programming language (in our
case Java) integrating WebDriver commands with JUnit or TestNG assertions. We chose
WebDriver as the representative of this category, because: (1) it is a quite mature tool,
(2) it is open-source, (3) it is one of the most widely-used open-source solutions for Web
test automation (even in the industry), (4) during a previous industrial collaboration [8],
we have gained a considerable experience on its usage.

As an example, we here use a simple WebDriver test case (Fig. 3 left): a successful
authentication test case. It submits a valid login, using correct credentials (i.e., user-
name=John.Doe and password=123456) and verifies that in the home page the user
appears as correctly authenticated (“John.Doe” must be displayed in the top-right corner
of the home page).

The first step is to create two page objects (LoginPage.java and HomePage.java) cor-
responding to the Web pages login.asp and homepage.asp respectively (see Fig. 2). The
page object LoginPage.java offers a method to log into the application. This method takes
username and password as inputs, inserts them in the corresponding input fields, clicks
the Login button and returns a page object of kind HomePage.java, because after clicking
the Login button the application moves to the page homepage.asp. HomePage.java
contains a method that returns the username authenticated in the application or “Guest”
when no user is authenticated. As shown in Fig. 2, the Web page elements are located

public void testLogin() { // WebDriver
 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("John.Doe","123456");
 // we are in the 'homepage.asp' page
 assertEquals("John.Doe", HP.getUsername());
}

public void testLogin(){ // Sikuli

 // we start from the 'login.asp' page
 CommonPage.open("http://www.....com/login.asp");
 LoginPage LP = new LoginPage();
 HomePage HP = LP.login("John.Doe", "123456"); John.Doe
 // we are in the 'homepage.asp' page
 assertTrue(HP.isUsernamePresent(new URL("JohnDoe.png")));
}

Fig. 3. TestLogin test case in Selenium WebDriver (left) and in Sikuli API (right)

by searching for values in the DOM (using ID and LinkText locators) or navigating it
(using XPath locators). While WebDriver offers several alternative ways to locate the
Web elements in a Web page, the most effective one, according to WebDriver developers
(http://docs.seleniumhq.org/docs/03_webdriver.jsp), is searching the elements by their ID
values. Hence, whenever possible, we used this method. The second step is to develop
the test case making use of the page objects (see Fig. 3 left). In the test method, first, a
WebDriver of type FirefoxDriver is created, so that the test case can control a Firefox
browser as a real user does; second, the WebDriver (i.e., the browser) opens the specified
URL and creates a page object that instantiates LoginPage.java (modelling the login.asp
page); third, using method login(...) offered by the page object, a new page object (HP)
representing the page homepage.asp is created; finally, the test case assertion is checked.

Visual Programmable Test Case Creation: The Web app testing tool, belonging to the
Visual/Programmable category, that we used in this work is Sikuli API release 1.0.2 (in
the following shortly referred to as Sikuli - http://code.google.com/p/sikuli-api/). Sikuli is
a visual technology able to automate and test graphical user interfaces using screenshot
images. It provides image-based GUI automation functionalities to Java programmers.
We chose Sikuli as the representative of this category mainly because: (1) it is open-
source and (2) it is similar to WebDriver, thus, we can create test cases and page objects
similarly to the ones produced for WebDriver. In this way, using Sikuli, we are able
to make the comparison between visual and DOM-based programmable tools fair and
focused as much as possible on the differences of the two approaches. In fact, in this
way we can use the same programming environment: programming language (Java),
IDE (Eclipse), and testing framework (JUnit). Sikuli allows software testers to write
scripts based on images that define the GUI widgets to be tested and the assertions to be
checked. This is substantially different from the way in which WebDriver performs page
element localisation and assertion checking.

As an example, the Sikuli version of the testLogin test case is shown in Fig. 3
(right) while the related page objects are given in Fig. 4. The test case developed in Sikuli
performs the same conceptual steps2 as the WebDriver test case, as apparent from Fig. 3
(left) and Fig. 3 (right). The page objects (shown in Fig. 4) are instead quite different. To
locate a Web page element, an instruction (based on the Sikuli Java API) is used which
searches for the portion of Web page that looks like the image saved for the test suite

2 Actually, in Sikuli there is no command to open Firefox at a specified URL as in WebDriver.
We have encapsulated this functionality in a method, CommonPage.open(...), that clicks
the Firefox icon on the desktop, inserts the URL into the address bar and then clicks on the “go”
arrow.

public class LoginPage {
 private ScreenRegion s = new DesktopScreenRegion();
 private Mouse m = new DesktopMouse();
 private Keyboard keyboard = new DesktopKeyboard();
 public HomePage login(String UID, String PW){
 m.click(s.find(new ImageTarget(new URL("un.png"))).getCenter());

 keyboard.type(UID);

 m.click(s.find(new ImageTarget(new URL("pw.png"))).getCenter());

 keyboard.type(PW);
 m.click(s.find(new ImageTarget(new URL("log.png"))).getCenter());
 return new HomePage();
 }
}

public class HomePage {
 private ScreenRegion s = new
 DesktopScreenRegion();
 private Mouse m = new DesktopMouse();
 public boolean isUsernamePresent(URL uname){
 try{m.click(s.find(new
 ImageTarget(uname)).getCenter());
 return true;
 } catch(Exception e) {return false;}
 }
}

Fig. 4. LoginPage and HomePage page objects in Sikuli API

(e.g., in a png file). Thus, in Sikuli, locators are always images. In addition, some other
minor differences can be noticed in the test case implementation. For instance, in the
case of WebDriver it is possible to assert that an element must contain a certain text (see
the last line in Fig. 3 (left)), while in Sikuli it is necessary to assert that the page shows a
portion equal to an image where the desired text is displayed (see the last line in Fig. 3
(right)).

2.2 Test Case Evolution

When a Web app evolves to accommodate requirement changes, bug fixes, or functional-
ity extensions, test cases may become broken. For example, test cases may be unable to
locate some links, input fields and submission buttons and software testers will have to
repair them. This is a tedious and expensive task since it has to be performed manually
(automatic evolution of test suites is far from being consolidated [11]).

Depending on the kind of maintenance task that has been performed on the target
Web app, a software tester has to execute a series of test case repairment activities that
can be categorised, for the sake of simplicity, in two types: logical and structural.

Logical Changes involve the modification of the Web app functionality. To repair
the test cases, the tester has to modify the broken test cases and the corresponding
page objects and in some cases, new page objects have to be created. An example of a
change request that needs a logical repairment activity is enforcing the security by means
of stronger authentication and thus adding a new Web page, containing an additional
question, after the login.asp page of Fig. 1. In this case, the tester has to create a new
page object for the Web page providing the additional authentication question. Moreover,
she has to repair both the testLogin test cases shown in Fig. 3, adding a new Java
command that calls the method offered by the new page object.

Structural Changes involve the modification of the Web page layout/structure only.
For example, in the Web page of Fig. 1 the string of the login button may be changed to
Submit. Usually, the impact of a structural change is smaller than a logical change. To
repair the test cases, often, it is sufficient to modify one or more localisation lines, i.e.,
lines containing locators. In the example, the tester has to modify the LoginPage.java
page object (see Fig. 2 and 4) by: (1) repairing the line:
driver.findElement(By.linkText("Login")).click()

in the case of Selenium WebDriver; or, (2) changing the image that represents the Login
button in the case of Sikuli.

3 Empirical Study

This section reports the design, objects, research questions, metrics, procedure, results,
discussion and threats to validity of the empirical study conducted to compare visual vs.
DOM-based Web testing.

3.1 Study Design

The primary goal of this study is to investigate the difference in terms of robustness (if
any) that can be achieved by adopting visual and DOM-based locators with the purpose of
understanding the strengths and the weaknesses of the two approaches. Then, after having
selected two tools that respectively belong to the two considered categories, as secondary
goal we investigated the cost/benefit trade-off of visual vs. DOM-based test cases for
Web apps. In this case, the cost/benefit focus regards the effort required for the creation of
the initial test suites from scratch, as well as the effort required for their evolution across
successive releases of the software. The results of this study are interpreted according
to two perspectives: (1) project managers, interested in understanding which approach
could lead to potentially more robust test cases, and in data about the costs and the
returns of the investment associated with both the approaches; (2) researchers, interested
in empirical data about the impact of different approaches on Web testing. The context
of the study is defined as follows: two human subjects have been involved, a PhD student
(the first author of this paper) and a junior developer (the second author, a master student
with 1-year industrial experience as software tester); the software objects are six open
source Web apps. The two human subjects participating in the study are referred below
using the term “developers”.

3.2 Web Applications

We have selected and downloaded six open-source Web apps from SourceForge.net.
We have included only applications that: (1) are quite recent, so that they can work
without problems on the latest versions of Apache, PHP and MySQL, technologies we
are familiar with (actually, since Sikuli and WebDriver implement a black-box approach,
the server side technologies do not affect the results of the study); (2) are well-known and
used (some of them have been downloaded more than one hundred thousand times last
year); (3) have at least two major releases (we have excluded minor releases because with
small differences between versions the majority of the test cases are expected to work
without problems); (4) belong to different application domains; and, (5) are non-RIA
– Rich Internet Applications (to make the comparison fair, since RIAs can be handled
better by the visual approach, see Sect. 3.7).

Table 1 reports some information about the selected applications. We can see that
all of them are quite recent (ranging from 2008 to 2013). On the contrary, they are
considerably different in terms of number of source files (ranging from 46 to 840) and
number of lines of code (ranging from 4 kLOC to 285 kLOC, considering only the lines
of code contained in the PHP source files, comments and blank lines excluded). The
difference in lines of code between 1st and 2nd release (columns 7 and 11) gives a rough
idea of how different the two chosen releases are.

Table 1. OBJECTS: WEB APPLICATIONS FROM SourceForge.net

Vers. Date File
a

kLOC
b Vers. Date File

a
kLOC

b

MantisBT bug tracking system sourceforge.net/projects/mantisbt/ 1.1.8 2009 492 90 1.2.0 2010 733 115

PPMA
c password manager sourceforge.net/projects/ppma/ 0.2 2011 93 4 0.3.5.1 2013 108 5

Claroline learning environment sourceforge.net/projects/claroline/ 1.10.7 2011 840 277 1.11.5 2013 835 285
Address Book address/phone book sourceforge.net/projects/php-addressbook/ 4.0 2009 46 4 8.2.5 2012 239 30
MRBS meeting rooms manager sourceforge.net/projects/mrbs/ 1.2.6.1 2008 63 9 1.4.9 2012 128 27
Collabtive collaboration software sourceforge.net/projects/collabtive/ 0.65 2010 148 68 1.0 2013 151 73

Description Web Site
1st Release 2nd Release

a
 Only PHP source files were considered

b
 PHP LOC - Comment and Blank lines are not considered

3.3 Research Questions and Metrics

Our empirical study aims at answering the following research questions, split between
considerably tool-independent (A) and significantly tool-dependent (B) questions:
RQ A.1: Do Visual and DOM-based test suites require the same number of locators?
The goal is to quantify and compare the number of locators required when adopting the
two different approaches. This would give developers and project managers a rough idea
of the inherent effort required to build the test suites by following the two approaches.
Moreover, the total number of locators could influence also the maintenance effort, since
the more the locators are, the more the potential locators to repair could be. The metrics
used to answer the research question is the number of created locators.
RQ A.2: What is the robustness of visual vs. DOM-based locators?
The goal is to quantify and compare the robustness of the visual and the DOM-based
locators. This would give developers and project managers an idea of the inherent
robustness of the locators created by following the two approaches. The metrics used to
answer this research question is the number of broken locators.
RQ B.1: What is the initial development effort for the creation of visual vs. DOM-based
test suites?
The goal is to quantify and compare the development cost of visual and DOM-based
tests. This would give developers and project managers an idea of the initial investment
(tester training excluded) to be made if visual test suites are adopted, as compared to
DOM-based test suites. The metrics used to answer this research question is the time
(measured in minutes) the two developers spent in developing visual test suites vs.
DOM-based test suites.
RQ B.2: What is the effort involved in the evolution of visual vs. DOM-based test suites
when a new release of the software is produced?
This research question involves a software evolution scenario. For the next major release
of each Web app under test, the two developers evolved the test suites so as to make
them applicable to the new software release. The test case evolution effort for visual and
for DOM-based test suites was measured as the time (measured in minutes) spent to
update the test suites, until they were all working on the new release.
RQ B.3: What is the execution time required by visual vs. DOM-based test suites?
Image processing algorithms are known to be quite computation-intensive [2] and
execution time is often reported as one of the weaknesses of visual testing. We want to
quantitatively measure the execution time difference (in seconds) between visual and
DOM-based test execution tools.

It should be noticed that the findings for research questions A.x are mostly influenced
by the approaches adopted, independently of the tools that implement them, since the

number of (DOM-based/visual) locators and the number of broken locators depend
mostly on the test cases (and on the tested Web app), not on the tools. On the other hand,
the metrics for research questions B.x (effort and execution time) are influenced by the
specific tools adopted in the empirical evaluation.

3.4 Experimental Procedure
The experiment has been performed as follows:
– Six open-source Web apps have been selected from SourceForge.net as explained in
Section 3.2.
– For each selected application, two equivalent test suites (written for Sikuli and Web-
Driver) have been built by the two developers, working in pair-programming and adopting
a systematic approach consisting of three steps: (1) the main functionalities of the target
Web app are identified from the available documentation; (2) each discovered functional-
ity is covered with at least one test case (developers have assigned a meaningful name to
each test case, so as to keep the mapping between test cases and functionalities); (3) each
test case is implemented with Sikuli and WebDriver. For both approaches, we considered
the following best practices: (1) we used the page object pattern and (2) we preferred,
for WebDriver, the ID locators when possible (i.e., when HTML tags are provided with
IDs), otherwise Name, LinkText, CSS and XPath locators were used following this order.
Overall, for the WebDriver case we created: 82 ID, 99 Name, 65 LinkText, 64 CSS and
177 XPath locators. For each test suite, we measured the number of produced locators
(to answer RQ A.1) and the development effort for the implementation as clock time (to
answer RQ B.1). Each pair of test suites (i.e., visual and DOM-based) are equivalent
because the included test cases test exactly the same functionalities, using the same
sequences of actions (e.g., locating the same web page elements) and the same input
data. The WebDriver test suites had been created by the same two developers about a
year ago during a previous case study [9], while the Sikuli test suites have been created
more recently, for the present study, which potentially gives a slight advantage to Sikuli
(see Threats to Validity section).
– Each test suite has been executed against the second release of the Web app (see Table 1).
First, we recorded the failed test cases (we highlight that no real bugs have been detected
in the considered applications; all the failures are due to broken locators and minimally
to modifications to the test cases logic) and then, in a second phase, we repaired them.
We measured the number of broken locators (to answer RQ A.2) and the repair effort
as clock time (to answer RQ B.2). Finally, to answer RQ B.3 we executed 10 times
(to average over any random fluctuation of the execution time) each of the 12 repaired
test suites (both WebDriver and Sikuli test cases) and recorded the execution times. We
executed the test suites on a machine hosting an Intel Core i5 dual-core processor (2.5
GHz) and 8 GB RAM, with no other computation or communication load, in order to
avoid CPU or memory saturation. To avoid as much as possible network delays we
installed the web server hosting the applications on a machine belonging to the same
LAN.
– The results obtained for each test suite have been compared to answer our research
questions. On the results, we conducted both a quantitative analysis and a qualitative
analysis, completed with a final discussion where we report our lessons learnt. The test
suites source code can be found at: http://softeng.disi.unige.it/2014-Visual-DOM.php

3.5 Quantitative Results
This section reports the quantitative results of the empirical study, while the reasons and
implications of the results are further analysed in Section 3.6.
RQ A.1. Table 2 shows the data to answer the A.x research questions by reporting,
for each application, the number of visual and DOM-based broken/total locators. The
number of locators required to build the test suites varies from 81 to 158 when adopting
the visual approach and from 42 to 126 when adopting the DOM-based one. For all
the six applications the number of required locators is higher when adopting the visual
approach. Considering the data in aggregate form, we created 45% more Visual locators
than DOM locators (706 visual vs. 487 DOM-based locators). To summarise, with
respect to the research question RQ A.1, the visual approach has always required to
create a higher number of locators.
RQ A.2. From the data shown in Table 2, we can see that in only two test suites out of six
visual locators result more robust than the DOM-based ones (i.e., Mantis and Collabtive),
while in the remaining four cases the DOM-based locators are more robust. Overall, 312
visual locators out of 706 result broken, while only 162 DOM-based locators out of 487
have been repaired (i.e., 93% more broken locators in the case of the visual approach).
To summarise, with respect to RQ A.2, the result is not clear-cut. Generally, DOM-based
locators are more robust but in certain cases (i.e., depending on the kind of modifications
among the considered releases), visual locators proved to be the most robust (e.g., in
Collabtive only 4 broken visual locators vs. 36 DOM-based ones).
RQ B.1. Table 3 reports some data about the developed test suites. For each application,
it reports: the number of test cases and page objects in the test suites built for the newer
release of each application (c. 1- 2); the time required for the initial development of
the test suites (c. 3- 4); the percentage difference between the initial development time
required by WebDriver vs. Sikuli (c. 5); the p-value of the Wilcoxon paired test used
to assess whether the development time difference is statistically significant (c. 6) and
finally the test suites size (measured in Lines Of Code (LOC), comment and blank lines
have not been not considered), split between page objects and test cases, for the newer
release of each application (c. 7-12). The development of the Sikuli test suites required
from 229 to 498 minutes, while the WebDriver suites required from 98 to 383 minutes.
In all the six cases, the development of the WebDriver test suites required less time
than the Sikuli test suites (from 22% to 57%). This is related with the lower number of
locators required when adopting the DOM-based approach (see RQ A.1). According to
the Wilcoxon paired test (see c. 6 of Table 3), the difference in test suite development
time between Sikuli and WebDriver is statistically significant (at α = 0.05) for all test
suites. For what concerns the size of the test suites (Table 3, c. 9, Total), we can notice
that in all the cases, the majority of the code is devoted to the test case logics, while only

Table 2. VISUAL VS. DOM-BASED LOCATORS ROBUSTNESS

MantisBT 15 127 29 106
PPMA 78 81 24 42
Claroline 56 158 30 126
Address Book 103 122 14 54
MRBS 56 83 29 51
Collabtive 4 135 36 108

DOM-BasedVisual
Total

Locators

Total

Locators

Broken

Locators

Broken

Locators

Table 3. TEST SUITES DEVELOPMENT

Test PO Total Test PO Total

MantisBT 41 30 498 383 -23% < 0.01 1645 1291 2936 1577 1054 2631
PPMA 23 6 229 98 -57% < 0.01 958 589 1547 867 346 1213
Claroline 40 22 381 239 -37% < 0.01 1613 1267 2880 1564 1043 2607
Address Book 28 7 283 153 -46% < 0.01 1080 686 1766 1078 394 1472
MRBS 24 8 266 133 -50% < 0.01 1051 601 1652 949 372 1321
Collabtive 40 8 493 383 -22% < 0.01 1585 961 2546 1565 650 2215

WebDriverSikuli

API

Time (Minutes)

p-value
Sikuli API

Code (Java LOC)Number of
Test

Cases

Page

Objects
Web Driver

a small part is devoted to the implementation of the page objects. Moreover, the number
of LOCs composing the test cases is very similar for both Sikuli and WebDriver, while it
is always smaller in WebDriver for what concerns the page objects (often, in the Sikuli
page objects, two lines are needed to locate and perform an action on a web element
while in WebDriver just one is sufficient, see for example Fig. 2 and 4). To summarise,
with respect to the research question RQ B.1 we can say that for all the six considered
applications, the effort involved in the development of the Sikuli test suites is higher
than the one required by WebDriver.
RQ B.2. Table 4 shows data about the test suites repairing process. In detail, the table
reports, for each application, the time required to repair the test suites (Sikuli and
WebDriver), and the number of repaired test cases over the total number of test cases.
The WebDriver repair time is compared to the Sikuli repair time by computing the
percentage difference between the two and by running the Wilcoxon paired test, to check
for statistical significance of the difference. Sikuli test suites required from 7 to 126
minutes to be repaired, while WebDriver test suites required from 46 to 95 minutes. The
results are associated with the robustness of the two kinds of locators (RQ A.2) employed
by the two tools and thus follow the same trend: in four cases out of six, repairing of
the WebDriver test suites required less time (from 33% to 57% less) than Sikuli. In one
case (i.e., MantisBT), the WebDriver test suite required slightly more time (25% more)
to be repaired than the corresponding Sikuli test suite. In another case (i.e., Collabtive),
WebDriver required a huge amount of time for test suite repairment with respect to the
time required by Sikuli (about 10x more time with WebDriver where, as seen before,
we have about 10x more locators to repair). According to the Wilcoxon paired test,
the difference in test suite evolution time between Sikuli and WebDriver is statistically
significant (at α = 0.05) for all test suites (sometimes in opposite directions) except for
Claroline (see Table 4). Note that, the maintenance effort is almost entirely due to repair
the broken locators (i.e., structural changes) and minimally to modifications to the test
cases logic (i.e., logical changes). Indeed, during maintenance, we have approximately
modified only the 1% of the LOCs composing the test suites in order to address logical

Table 4. TEST SUITES MAINTENANCE

Time

Minutes Minutes p-value

MantisBT 76 37 / 41 95 + 25% 0.04 32 / 41
PPMA 112 20 / 23 55 - 51% < 0.01 17 / 23
Claroline 71 21 / 40 46 - 35% 0.30 20 / 40
Address Book 126 28 / 28 54 - 57% < 0.01 28 / 28
MRBS 108 21 / 24 72 - 33% 0.02 23 / 24
Collabtive 7 4 / 40 79 + 1029% < 0.01 23 / 40

Sikuli API WebDriver
Test

Repaired

Time Test

Repaired

Table 5. TEST SUITES EXECUTION

Mean

Seconds Absolute Relative Seconds p-value Absolute Relative

MantisBT 41 2774 60 2,2% 1567 - 43% < 0.01 70 4,5%
PPMA 23 1654 12 0,7% 924 - 44% < 0.01 35 3,8%
Claroline 40 2414 34 1,4% 1679 - 30% < 0.01 99 5,9%
Address Book 28 1591 19 1,2% 977 - 39% < 0.01 106 10,9%
MRBS 24 1595 19 1,2% 837 - 48% < 0.01 54 6,5%
Collabtive 40 2542 72 2,8% 1741 - 31% < 0.01 59 3,4%

Number

of Test

Cases

Meanσ σ
WebDriverSikuli API

changes of the Web apps. Very often the modifications were exactly the same for both
the approaches (i.e., Visual and DOM-based). To summarise, with respect to RQ B.2,
the result is not clear-cut. For four out of six considered applications, the effort involved
in the evolution of the Sikuli test suites, when a new release of the software is produced,
is higher than with WebDriver, but in two cases the opposite is true.
RQ B.3. Table 5 shows data about the time required to execute the test suites. For both
tools we report: the mean execution time, computed on 10 replications of each execution;
the standard deviation (absolute and relative); the difference in percentage between the
time required by the Sikuli test suites and the WebDriver test suites; and, the p value
reported by the Wilcoxon paired test, used to compare Sikuli vs. WebDriver’s execution
times. Execution times range from 1591s to 2774s for Sikuli and from 837s to 1741s for
WebDriver. In all the cases, the WebDriver test suites required less time to complete their
execution (from -30% to -48%). According to the Wilcoxon paired test, the difference is
statistically significant (at α = 0.05) for all test suites. To summarise, with respect to
the research question RQ B.3 the time required to execute the Sikuli test suites is higher
than the execution time of WebDriver for all the six considered applications.

3.6 Qualitative Results

In this section, we discuss on the factors behind the results presented in the previous
section, focusing more on the ones that are related to the two approaches and, for space
reasons, less on the factors related to the specific tools used:

Web Elements Changing their State. When a Web element changes its state (e.g., a
check box is checked or unchecked, or an input field is emptied or filled), a visual locator
must be created for each state, while with the DOM-based approach only one locator is
required. This occurred in all the six Sikuli test suites and it is one of the reasons why,
in all of them, we have more locators than in the WebDriver test suites (see RQ A.1
and Table 2). As a consequence, more effort both during the development (RQ B.1) and
maintenance (RQ B.2) is required in the case of Sikuli test suites (more than one locator
had to be created and later repaired for each Web element, RQ A.2). For instance, in
MRBS, when we tested the update functionality for the information associated with a
room reservation, we had to create two locators for the same check box (corresponding
to the slot: Monday from 9:00 to 10:00) to verify that the new state has been saved (e.g.,
from booked, checked, to available, unchecked). Similarly, in Collabtive, we had to verify
the changes in the check boxes used to update the permissions assigned to the system
users.

Changes behind the Scene. Sometimes it could happen that the HTML code is
modified without any perceptible impact on how the Web app appears. An extreme

example is changing the layout of a Web app from the “deprecated” table-based structure
to a div-based structure, without affecting its visual aspect in any respect. In this case,
the vast majority of the DOM-based locators (in particular the navigational ones, e.g.,
XPath) used by DOM-based tools may be broken. On the contrary, this change is almost
insignificant for visual test tools. A similar problem occurs when auto-generated ID
locators are used (e.g., id1, id2, id3, ... , idN) by DOM-based locators. In fact, these
tend to change across different releases, while leaving completely unaffected the visual
appearance of the Web page (hence, no maintenance is required on the visual test suites).
For example, the addition of a new link in a Web page might result in a change of all IDs
of the elements following the new link [8]. Such “changes behind the scene” occurred in
our empirical study and explain why, in the case of Collabtive, the Sikuli test suite has
required by far a lower maintenance effort (see RQ B.2 and Table 4). In detail, across
the two considered releases, a minor change has been applied to almost all the HTML
pages of Collabtive: an unused div tag has been removed. This little change impacted
quite strongly several of the XPath locators (XPath locators were used because IDs were
not present) in the WebDriver test suite (see RQ A.2). The majority of the 36 locators
(all of them are XPaths) was broken and had to be repaired (an example of repairment is
from .../div[2]/... to .../div[1]/...). No change was necessary on the Sikuli visual test suite
for this structural change. Overall, in Sikuli, we had only few locators broken. For this
reason, there is a large difference in the maintenance effort between the two test suites.
A similar change across releases occurred also in MantisBT, although it had a lower
impact in this application.

Repeated Web Elements. When in a Web page there are multiple instances of the
same kind of Web element (e.g., an input box), creating a visual locator requires more
time than creating a DOM-based one. Let us consider a common situation, consisting of
a form with multiple, repeated input fields to fill (e.g., multiple lines, each with Name,
Surname, etc.), all of which have the same size, thus appearing identical. In such cases,
it is not possible to create a visual locator using only an image of the Web element of
our interest (e.g., the repeated Name input field), but we have to: (i) include also some
context around (e.g., a label as shown in Fig. 4) in order to create an unambiguous locator
(i.e., an image that matches only one specific portion of the Web page) or, when this is
not easily feasible, (ii) locate directly a unique Web element close to the input field of
interest and then move the mouse of a certain amount of pixels, in order to reach the input
field. Both solutions locate the target Web element by means of another, easier to locate,
element (e.g., a label). This is not straightforward and natural for the test developer
(i.e., it requires more effort and time). Actually, both solutions are not quite convenient.
Solution (i) requires to create large image locators, including more than one Web element
(e.g., the label and the corresponding input field). On the other hand, even if it allows
to create a small locator image for only one Web element (e.g., the label), Solution (ii)
requires to calculate a distance in pixels (similarly to 1st generation tools), not so simple
to determine. Both solutions have problems in case of variation of the relative positions
of the elements in the next releases of the application. Thus, this factor has a negative
effect on both the development and maintenance of Sikuli test suites. Repeated Web
elements occurred in all test suites. For instance, in Claroline, a form contains a set of
radio buttons used to select the course type to create. In Sikuli, localisation of these

buttons requires either Solution (i) or (ii). Similarly, in AddressBook/MantisBT, when
a new entry/user is inserted, a list of input fields, all with the same appearance, has to
be filled. In these cases, we created the Sikuli locators as shown in Fig. 4. Recently,
JAutomate (http://jautomate.com/), a commercial GUI test automation tool, provided a
different solution to this problem by mixing visual locators and position indexes. When
a visual locator selects more than one element, it is possible to use an index to select the
desired element among the retrieved ones.

Elements with Complex Interaction. Complex Web elements, such as drop-down
lists and multilevel drop-down menus, are quite common in modern Web apps. For
instance, let us consider a registration form that asks for the nationality of the submitter.
Typically, this is implemented using a drop-down list containing a list of countries. A
DOM-based tool like WebDriver can provide a command to select directly an element
from a drop-down list (only one locator is required). On the contrary, when adopting the
visual approach the task is much more complex. Once could, for instance: (1) locate the
drop-down list (more precisely the arrow that shows the menu) using an image locator;
(2) click on it; (3) if the required list element is not shown, locate and move the scrollbar
(e.g., by clicking the arrow); (4) locate the required element using another image locator;
and, finally, (5) click on it. All these steps together require more LOCs (in the page
objects, see RQ B.1) and locators. Actually, in this case the visual approach performs
exactly the same steps that a human tester would do.

Execution Time. The execution time required by the Sikuli tool is always higher
than the one required by WebDriver (see RQ B.3 and Table 5). This was expected,
since executing an image recognition algorithm requires more computational resources
(and thus, generally, more time) than navigating the DOM. However, surprisingly, the
difference in percentage between the two approaches is not high, being only 30-48%.
It is not very much considering that: (1) Sikuli is a quite experimental tool, (2) it is
not focused on Web app testing and, (3) the needed manual management of the pages
loading delay (through sleep commands) we applied is not optimal3. For what concerns
the latter point, according to our estimates, the overhead due to the Web page loading
delay is not a major penalty for Sikuli (only 20-40 seconds per test suite) as compared
to the total processing time. Indeed, we carefully tuned the delays in order to find the
smallest required. The standard deviation (see Table 5) is always greater in the case of
WebDriver given that, sometimes, it unexpectedly and randomly stops for short periods
during test suites execution (e.g., 2-3s between two test cases).

Lesson Learnt: In the following, we report some lessons learnt during the use of the
two experimented approaches and tools:

Data-driven Test Cases. Often in the industrial practice [8], to improve the coverage
reached by a test suite, test cases are re-executed multiple times using different values.
This is very well supported by a programmable testing approach. However, benefits
depend on the specific programmable approach that is adopted (e.g., visual vs. DOM-
based). For instance, in WebDriver it is possible to use data from various sources, such

3 A browser needs time to open a Web page. Thus, before starting to perform actions on the page
the test automation tool has to wait. WebDriver provides specific commands to deal with this
problem (i.e., waiting for the web page loading). In Sikuli this is not available and testers have
to insert an explicit delay (e.g., Thread.sleep(200)).

as CSV files or databases, or even to generate them at runtime. In Sikuli it is necessary to
have images of the target Web elements, so even if we can use various data sources (e.g.,
to fill input fields), when assertions are evaluated, images are still needed to represent
the expected data (see Fig. 3). For this reason, in the visual approach it is not possible to
create complete data-driven test cases (i.e., for both input and assertions). In fact, while
it is indeed possible to parameterise the usage of image locators in the assertions, it is
not possible to generate them from data. This happens because using a DOM-based tool
there is a clear separation between the locator for a Web element (e.g., an ID value)
and the content of that Web element (e.g. the displayed string), so that we can reuse
the same locator with different contents (e.g., test assertion values). On the contrary,
using a visual tool, the locator for a Web element and the displayed content are the
same thing, thus if the content changes, the locator must be also modified. Moreover, it
is important to highlight that, if necessary, parameterising the creation of DOM-based
locators is usually an easy task (e.g., .//*[@id=‘list’]/tr[X]/td[1] with X=1..n), while it is
infeasible in the visual approach. In our case study, we experienced this limitation of
the visual approach since we had, in each test suite, at least one test case that performs
multiple, repeated operations that change only in the data values being manipulated,
such as: insert/remove multiple different users, projects, addresses, or groups (depending
on the considered application). In such cases we used: (1) a single parameterized locator
in WebDriver, and (2) several different image locators in Sikuli (e.g., for evaluating the
assertions), with the effect that, in the second case, the number of locators required is
higher.

Test Case Comprehensibility. The locators used by the two approaches have often
a different degree of comprehensibility. For instance, by comparing Fig. 2 with Fig. 4,
it is clear that the visual locator pw.png (password) is much easier to understand than
the corresponding XPath locator. In fact, the visual approach works in a manner that is
closer to humans than the DOM-based approach. In our case study, we experienced this
fact several times. For instance, during test suites maintenance, understanding why a
locator is broken is generally easier and faster with Sikuli than with WebDriver.

Test Suites Portability. If a Sikuli test suite is executed on a different machine where
the screen resolution or the font properties are different, Sikuli test cases may not work
properly. We experienced this problem two times while executing the Sikuli test suites on
two different computers: in one case because the default font size was different, resulting
in broken image locators, and in another case because the screen resolution was lower
than expected, thus more mouse scroll operations were required.

3.7 Threats to Validity

The main threats to validity that affect this study are: Construct (authors’ bias), Internal
and External validity threats.

Authors’ Bias threat concerns the involvement of the authors in manual activities
conducted during the empirical study and the influence of the authors’ expectations about
the empirical study on such activities. In our case, two of the authors developed the test
suites and evolved them to match the next major release of each application under test.
Since none of the authors was involved in the development of any of the tools assessed
in the empirical study, the authors’ expectations were in no particular direction for what

concerns the performance of the tools. Hence, we think that the authors’ involvement in
some manual activities does not introduce any specific bias.

Internal Validity threats concern confounding factors that may affect a dependent
variable (number of locators, number of broken locators, development, repair, and
execution time of the test suites). One such factor is associated with the approach used
to produce the test cases (i.e., the chosen functional coverage criterion). Moreover, the
variability involved in the selection of the input data and of the locators could have
played a role. To mitigate this threat, we have adopted a systematic approach and applied
all known good-practices in the construction of programmable test suites. Concerning
RQ B.1, learning effects may have occurred between the construction of the test suites
for WebDriver and Sikuli. However, this is quite unlikely given the long time (several
months) elapsed between the development of WebDriver and Sikuli test suites and the
kind of locators (DOM-based vs. visual), which is quite different. Moreover, given the
high level of similarity of the test code (in practice, only locators are different), learning
would favour Sikuli, which eventually showed lower performance than WebDriver, so if
any learning occurred, we expect that without learning the results would be just amplified,
but still in the same direction.

External Validity threats are related to the generalisation of results. The selected
applications are real open source Web apps belonging to different domains. This makes
the context quite realistic, even though further studies with other applications are neces-
sary to confirm or confute the obtained results. In particular, our findings could not hold
for RIAs providing sophisticated user interactions, like, for instance, Google Maps or
Google Docs. In fact, using a visual approach it is possible to create test cases that are
very difficult (if not impossible) to realise with the DOM-based approach. For instance,
it is possible to verify that in Google Docs, after clicking the “center” button, a portion
of text becomes centred in the page, which is in practice impossible using just the DOM.
The results about number and robustness of locators used by the visual and DOM-based
approaches (RQ A.1 and RQ A.2) are not tied to any particular tool, thus we expect they
hold whatever tool is chosen in the two categories. On the other hand, the same is not
completely true for RQ B.1 and RQ B.2, where the results about the development and
maintenance effort are also influenced by the chosen tools, and different results could be
obtained with other Web testing frameworks/tools. The problem of the generalisation
of the results concerns also RQ B.3 where, for instance, employing a different image
recognition algorithm could lead to different execution times.

4 Related Works
We focus our related work discussion considering studies about test suite development
and evolution using visual tools; we also consider automatic repairment of test cases.

Several works show that the visual testing automation approach has been recently
adopted by the industry [2, 6] and governmental institutions [3]. Borjesson and Feldt
in [2], evaluate two visual GUI testing tools (Sikuli and a commercial tool) on a real-
world, safety-critical industrial software system with the goal of assessing their usability
and applicability in an industrial setting. Results show that visual GUI testing tools
are applicable to automate acceptance tests for industrial systems with both cost and
potentially quality gains over state-of-practice manual testing. Differently from us, they

compared two tools both employing the visual approach and did not focus specifically
on Web app testing. Moreover, our goal (comparing visual vs. DOM-based locators) is
completely different from theirs.

Collins et al. [6], present three testing automation strategies applied in three different
industrial projects adopting the Scrum agile methodology. The functional GUI test
automation tools used in these three projects were respectively: Sikuli, Selenium RC and
IDE, and Fitnesse. Capocchi et al. [3], propose an approach, based on the DEVSimPy
environment and employing both Selenium and Sikuli, aimed at facilitating and speeding
up the testing of GUI software. They validated this approach on a real application dealing
with medical software.

Chang et al. [4] present a small experiment to analyse the long-term reusability of
Sikuli test cases. They selected two open-source applications (Capivara and jEdit) and
built a test suite for each application (10 test cases for Capivara and 13 test cases for
jEdit). Using some subsequent releases of the two selected applications, they evaluated
how many test cases turned out to be broken in each release. The lesson drawn from this
experiment is: as long as a GUI evolves incrementally a significant number of Sikuli test
cases can still be reusable. Differently from us, the authors employed only a visual tool
(Sikuli) without executing a direct comparison with other tools.

It is well-known that maintaining automated test cases is expensive and time consum-
ing (costs are more significant for automated than for manual testing [15]), and that often
test cases are discarded by software developers due to huge maintenance costs. For this
reason, several researchers proposed techniques and tools for automatically repairing
test cases. For instance, Mirzaaghaei et al. [12] presents TestCareAssistant (TcA), a tool
that combines data-flow analysis and program differencing to automatically repair test
compilation errors caused by changes in the declaration of method parameters. Other
tools for automatically repairing GUI test cases or reducing their maintenance effort
have been presented in the literature [16, 7, 10]. Choudhary et al. [5] extended these
proposals to Web apps, presenting a technique able to automatically suggest repairs for
Web app test cases.

5 Conclusions and Future Work
We have conducted an empirical study to compare the robustness of visual vs. a DOM-
based locators. For six subject applications, two equivalent test suites have been devel-
oped respectively in WebDriver and Sikuli. In addition to the robustness variable, we
have also investigated: the initial test suite development effort, the test suite evolution
cost, and the test suite execution time. Results indicate that DOM-based locators are
generally more robust than visual ones and that DOM-based test cases can be developed
from scratch at lower cost and most of the times they can be evolved at lower cost.
However, on specific Web apps (MantisBT and Collabtive) visual locators were easier
to repair, because the visual appearance of those applications remained stable across
releases, while their structure changed a lot. DOM-based test cases required a lower
execution time (due to the computational demands of image recognition algorithms
used by the visual approach), although the difference was not that dramatic. Overall,
the choice between DOM-based and visual locators is application-specific and depends
quite strongly on the expected structural and visual evolution of the application. Other

factors may also affect the testers’ decision, such as the availability/unavailability of
visual locators for Web elements that are important during testing and the presence
of advanced, RIA functionalities which cannot be tested using DOM-based locators.
Moreover, visual test cases are definitely easier to understand, which, depending on the
skills of the involved testers, might also play a role in the decision.

In our future work we intend to conduct further studies to corroborate our findings.
We plan to complete the empirical assessment of the Web testing approaches by con-
sidering also tools that implement capture-replay with visual Web element localisation
(e.g., JAutomate). Finally, we plan to evaluate tools that combine the two approaches,
such as SikuliFirefoxDriver (http://code.google.com/p/sikuli-api/wiki/SikuliWebDriver),
that extends WebDriver by adding the Sikuli image search capability, combining in this
way the respective strengths.

References

1. S. Berner, R. Weber, and R. Keller. Observations and lessons learned from automated testing.
In Proc. of ICSE 2005, pages 571–579. IEEE, 2005.

2. E. Borjesson and R. Feldt. Automated system testing using visual GUI testing tools: A
comparative study in industry. In Proc. of ICST 2012, pages 350–359, 2012.

3. L. Capocchi, J.-F. Santucci, and T. Ville. Software test automation using DEVSimPy environ-
ment. In Proc. of SIGSIM-PADS 2013, pages 343–348. ACM, 2013.

4. T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer vision. In Proc. of CHI
2010, pages 1535–1544. ACM, 2010.

5. S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application test repair. In
Proc. of ETSE 2011, pages 24–29. ACM, 2011.

6. E. Collins, A. Dias-Neto, and V. de Lucena. Strategies for agile software testing automation:
An industrial experience. In Proc. of COMPSACW 2012, pages 440–445. IEEE, 2012.

7. M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed test scripts. In
Proc. of ICSE 2009, pages 408–418. IEEE, 2009.

8. M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites maintainability with
the page object pattern: An industrial case study. In Proc. of 6th Int. Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2013, pages 108–113. IEEE, 2013.

9. M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable web testing:
An empirical assessment during test case evolution. In Proc. of 20th Working Conference on
Reverse Engineering, WCRE 2013, pages 272–281. IEEE, 2013.

10. A. M. Memon. Automatically repairing event sequence-based GUI test suites for regression
testing. TOSEM, 18(2):4:1–4:36, Nov. 2008.

11. M. Mirzaaghaei. Automatic test suite evolution. In Proc. of ESEC/FSE 2011, pages 396–399.
ACM, 2011.

12. M. Mirzaaghaei, F. Pastore, and M. Pezze. Automatically repairing test cases for evolving
method declarations. In Proc. of ICSM 2010, pages 1–5. IEEE, 2010.

13. F. Ricca and P. Tonella. Testing processes of web applications. Ann. Softw. Eng., 14(1-4):93–
114, Dec. 2002.

14. F. Ricca and P. Tonella. Detecting anomaly and failure in web applications. IEEE MultiMedia,
13(2):44–51, 2006.

15. M. Skoglund and P. Runeson. A case study on regression test suite maintenance in system
evolution. In Proc. of ICSM 2004, pages 438–442. IEEE, 2004.

16. Q. Xie, M. Grechanik, and C. Fu. Rest: A tool for reducing effort in script-based testing. In
Proc. of ICSM 2008, pages 468–469. IEEE, 2008.

