
Copyright:

© ACM, 2015. This is the author's version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of 30th ACM/SIGAPP

Symposium on Applied Computing (SAC 2015)

http://dx.doi.org/10.1145/2695664.2695847

Automated Generation of Visual Web Tests from

DOM-based Web Tests

Maurizio Leotta, Andrea Stocco, Filippo Ricca, Paolo Tonella

Abstract:

Functional test automation is increasingly adopted by web applications developers. In

particular, 2nd generation tools overcome the limitations of 1st generation tools, based on

screen coordinates, by providing APIs for easy selection and interaction with Document

Object Model (DOM) elements. On the other hand, a new, 3rd generation of web testing

tools, based on visual image recognition, brings the promise of wider applicability and

simplicity. In this paper, we consider the problem of the automated creation of 3rd generation

visual web tests from 2nd generation test suites. This transformation affects mostly the way

in which test cases locate web page elements to interact with or to assert the expected test

case outcome.

Our tool PESTO determines automatically the screen position of a web element located in the

DOM by a DOM-based test case. It then determines a rectangle image centred around the

web element so as to ensure unique visual matching. Based on such automatically extracted

images, the original, 2nd generation test suite is rewritten into a 3rd generation, visual test

suite. Experimental results show that our approach is accurate, hence potentially saving

substantial human effort in the creation of visual web tests from DOM-based ones.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1145/2695664.2695847

Automated Generation of Visual Web Tests from
DOM-based Web Tests

Maurizio Leotta1, Andrea Stocco1, Filippo Ricca1, Paolo Tonella2

1DIBRIS, Università di Genova, Italy 2Fondazione Bruno Kessler, Italy

{maurizio.leotta, andrea.stocco, filippo.ricca}@unige.it, tonella@fbk.eu

ABSTRACT
Functional test automation is increasingly adopted by web applica-
tions developers. In particular, 2nd generation tools overcome the
limitations of 1st generation tools, based on screen coordinates, by
providing APIs for easy selection and interaction with Document
Object Model (DOM) elements. On the other hand, a new, 3rd
generation of web testing tools, based on visual image recognition,
brings the promise of wider applicability and simplicity. In this
paper, we consider the problem of the automated creation of 3rd
generation visual web tests from 2nd generation test suites. This
transformation affects mostly the way in which test cases locate web
page elements to interact with or to assert the expected test case
outcome.

Our tool PESTO determines automatically the screen position of a
web element located in the DOM by a DOM-based test case. It then
determines a rectangle image centred around the web element so
as to ensure unique visual matching. Based on such automatically
extracted images, the original, 2nd generation test suite is rewritten
into a 3rd generation, visual test suite. Experimental results show
that our approach is accurate, hence potentially saving substantial
human effort in the creation of visual web tests from DOM-based
ones.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging–Testing tools

General Terms: Experimentation, Measurement

Keywords: Web Testing; DOM-based Testing; Visual Testing; Test
Automation; Selenium WebDriver; Sikuli; Page Object; PESTO

1. INTRODUCTION
Web applications are developed and evolved at a very fast rate.

Within such ultra-rapid development cycles, functional testing is an
option only if it is strongly supported by automated tools, which can
execute tests faster than a person can, and in an unattended mode,
saving testing time and resources [8].

The 1st generation of web test automation tools was based on
screen coordinates to locate the web elements to interact with, result-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SAC’15, April 13 - 17, 2015, Salamanca, Spain
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00
http://dx.doi.org/10.1145/2695664.2695847

ing in test suites that were very fragile when the application evolves.
Minimal changes in the web page layout may in fact corrupt the
existing test cases, requiring that developers redefine them from
scratch. Second generation tools, also called DOM-based tools,
access to the web page Document Object Model to overcome the
limitations of the 1st generation. The web elements involved in
the interactions performed by a test case are located by navigating
through the DOM of the web page. This can be easily achieved
via XPath queries or using unique anchors, such as web element
identifiers or text. Selenium WebDriver1 is an example of 2nd gen-
eration web testing tool. The test suites produced by these tools
are more robust than those obtained from 1st generation tools [1],
but their creation requires specialised skills, to properly navigate
the DOM tree, as well as detailed, white-box knowledge of the web
application. Third generation tools, such as Sikuli API2 allow to de-
fine test cases visually, without requiring any white-box knowledge
of the page structure. Web elements are identified by their visual
representation using advanced image recognition algorithms, hence
they do not suffer from the limitations of a pixel-based technique.

While DOM-based web testing is currently widely adopted in the
industry [3], the new generation of visual tools [1, 2] offers an inter-
esting alternative. This is particularly true when web applications
evolve to modern technologies, e.g., Ajax or complex visual compo-
nents (Google Docs or Maps), to offer increased user-friendliness
and responsiveness. In these cases, DOM-based tools do not suffice
because the DOM of these applications is complicated to retrieve.
However, moving the existing DOM-based test suites to the 3rd
generation may represent a substantial investment for companies;
the task is boring, time-consuming and expensive.

In this paper, we propose a novel solution to transform DOM-
based into visual test cases, so as to allow developers to experiment
with 3rd generation testing tools at minimal migration cost. Our
approach and its implementation, a prototype tool named PESTO, is
able to transform a Selenium WebDriver test suite (2nd generation
test suite) into a Sikuli API one (3rd generation test suite). Using
PESTO, companies and professionals can evaluate the benefits of
3rd generation tools at minimum cost, without taking the risks of
the manual migration. Automatically migrated test suites can be
smoothly introduced in the existing testing process, so as to evaluate
their effectiveness and robustness in comparison with the existing
DOM-based suites.
Our work makes the following contributions:
– an approach for the automatic creation of visual locators starting

from corresponding DOM-based locators. Our approach is based
on the automated localisation of the web elements involved in any
interaction or assertion performed by the original test suites. A

1http://seleniumhq.org/projects/webdriver/
2http://code.google.com/p/sikuli-api/

rectangle is automatically positioned and sized around these web
elements, and an image is automatically captured for each web
element surrounded by such rectangles;

– an approach for the automatic transformation of DOM-based test
suites to the Visual technology. Based on the captured images, the
original test suites are automatically rewritten as visual test suites;

– an implementation of our approach in an open source tool called
PESTO;

– an empirical evaluation to assess PESTO, demonstrating its effec-
tiveness. In our experiments on existing web applications, we eval-
uated the level of automation and correctness offered by PESTO.
Our conclusion is that, despite the limitations associated with our
current research prototype, PESTO’s performance is encouraging
and indicates that the approach is viable.
The paper is organised as follows: Section 2 provides some back-

ground on the selected 2nd and 3rd generation web testing tools.
Section 3 describes our approach. Section 4 presents the experimen-
tal results. Section 5 describes the current limitations of PESTO.
Section 6 discusses the related works, followed by conclusions and
future work.

2. BACKGROUND
Automated functional web testing is based on the creation of

test cases that automate the interaction with a web page and its
elements. Test cases can, for instance, automatically fill-in and
submit forms or click on hyperlinks. Test cases can be programmed
using general purpose programming languages (such as Java and
Ruby) and specific libraries that offer user friendly APIs, providing
commands to, e.g., click a button, fill a field and submit a form.
Finally, test cases are completed with assertions, e.g., using xUnit.

Nowadays, the most used web page elements localisation tech-
niques are [11]:
- DOM-based: elements are located using the information con-
tained in the Document Object Model (DOM). Tools belonging to
this category (2nd generation) usually offer different localisation
strategies (e.g., by ID, XPath and LinkText).
- Visual: tools belonging to 3rd generation use image recognition
techniques to identify and control web elements.

Let us consider a running example, consisting of a web application
including a login form shown in the upper right corner of the home
page (home.asp). This web application requires the authentication of
the users by entering their credentials, i.e., username and password
(see Figure 1). If the credentials are correct, the username (e.g.,
John.Doe) and the logout button replace the login form in the upper
right corner of the home page. Otherwise, the login form is still
shown.

2.1 The Page Object and Factory Patterns
The Page Object3 is a quite popular web test design pattern, which

aims at improving the test case maintainability and reducing the
duplication of code. A Page Object is a class that represents the web
page elements as a series of objects and encapsulates the features of
the web page in methods. All the functionalities to interact with or
to make assertions about a web page are offered in a single place,
the Page Object, and can be easily called and reused within any
test case. Usually page objects are initialised by a Page Factory, a
factory class that checks the correct mapping and initialisation of the
web elements. The use of Page Object and Page Factory patterns
reduces the coupling between web pages and test cases, promoting
reusability, readability and maintainability of the test suites [9].

3http://martinfowler.com/bliki/PageObject.html

<form name="loginform" action="home.asp" method="post">

 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login

</form>

Username:
Password:
 Login

Figure 1: home.asp – Page and Source of the Login form

2.2 DOM-based Web Testing
In this work, we consider Selenium WebDriver as a representa-

tive tool for implementing DOM-based web test suites (for short,
WebDriver). WebDriver is a tool for automating web application
testing that provides a comprehensive programming interface used
to control the browser. WebDriver test cases are written in the Java
programming language, by integrating WebDriver commands with
JUnit or TestNG assertions. We chose WebDriver as the represen-
tative of this category, because: (1) it is a quite mature tool, (2) it
is open-source, (3) it is one of the most widely-used open-source
solutions for web test automation, (4) during a previous industrial
collaboration, we gained a considerable experience in its usage [9].

In Figure 2 (top), we show an example of a simple WebDriver
test case for our running example application corresponding to
a successful authentication. This automated test case submits a
valid login, using correct credentials (i.e., username=John.Doe and
password=123456) and verifies that in the home page the user
appears as correctly authenticated (the string “John.Doe” must be
displayed in the top-right corner of the home page, i.e., it must be
contained in the text of the HTML tag with ID="LoggedUser").

The first step for building this test case is creating the Home-
Page.java page object (see Figure 3), corresponding to the home.asp
web page. The page object HomePage.java offers a method to log
into the application. It takes in input username and password, inserts
them in the corresponding input fields and clicks the Login button.
Moreover, HomePage.java contains also a method that verifies the
authenticated username in the application. As shown in Figure 3,
web page elements are located using DOM-based locators (e.g., ID,
LinkText, XPath).

The second step requires to develop the test case making use of
the page object methods (see Figure 2 (top)). In the test case, first,
a WebDriver of type FirefoxDriver is created to control the Firefox
browser as a real user does; second, WebDriver (i.e., the browser)
opens the specified URL and creates a page object that instantiates
HomePage.java; third, using method login(...) , the test tries to login
in the application; finally, the test case assertion is checked.

public void testLogin() { //WebDriver
 WebDriver driver = new FirefoxDriver();
 driver.get("http://www.....com/home.asp");
 HomePage HP = new HomePage(driver);
 HP.login("John.Doe","123456");
 assertTrue(HP.checkLoggedUser("John.Doe"));
}

public void testLogin() { //Sikuli
 CommonPage.open("http://www.....com/home.asp");
 //WebDriver driver = new FirefoxDriver();
 //driver.get("http://www.....com/home.asp");
 HomePage HP = new HomePage();
 HP.login("John.Doe","123456");
 assertTrue(HP.checkLoggedUser());
}

Figure 2: TestLogin test case in Selenium WebDriver and in
Sikuli API

public class HomePage {
 private final WebDriver driver;

 @FindBy(id="UID")
 private WebElement username;

 @FindBy(xpath="./form/input[2]")
 private WebElement password;

 @FindBy(linkText="Login")
 private WebElement login;

 @FindBy(id="LoggedUser")
 private WebElement loggedUser;

 public HomePage(WebDriver driver)
 {this.driver = driver;}

 public void login(String UID, String PW){
 username.sendKeys(UID);
 password.sendKeys(PW);
 login.click();
 }

 public Boolean checkLoggedUser(String name){
 return loggedUser.getText().contains(name);
 }
}

P
O

 M
e

th
o

d
s

L
o

c
a

to
rs

D

e
c

la
ra

ti
o

n
s

Figure 3: HomePage page object in Selenium WebDriver

2.3 Visual Web Testing
The testing tool belonging to the Visual category that we used

in this work is Sikuli API (for short, Sikuli). Sikuli is a visual tool
able to automate and test graphical user interfaces using screenshot
images. It provides image-based GUI automation functionalities
to Java programmers. We chose Sikuli as the representative of this
category mainly because: (1) it is open-source and (2) it is similar to
WebDriver, thus, we can create test cases and page objects similar
to the ones produced for WebDriver. Indeed, we can use the same
programming environment: programming language (Java), IDE
(Eclipse), and testing framework (JUnit). Sikuli allows testers to
write scripts based on images that define the GUI widgets to interact
with and the assertions to be checked.

As an example, the Sikuli version of the testLogin test case is
shown in Figure 2 (bottom), while the related page object is given
in Figure 4. The test case developed in Sikuli performs the same
conceptual steps as the WebDriver test case. The first operation,
CommonPage.open(...), aims at opening the browser at a spec-
ified URL. In a purely visual test case, it involves identifying and
clicking the Firefox icon on the desktop, inserting the URL into the
address bar and then clicking on the “go” arrow (these operations
are encapsulated in class CommonPage).

The following steps are basically the same in Sikuli and Web-
Driver, the only differences being that in Sikuli driver is not a
parameter of the HomePage constructor and the assertion checking
method does not need any string parameter (see the explanation
below). On the contrary, Sikuli’s page object is quite different from
WebDriver’s. As shown in Figure 4, command locate is invoked
to search for the portion of a web page that looks like the image
representing the rendering of the web element to be located. The
image must have been previously saved in the file system as a file or
must be available online. Once the web element has been located, a
ScreenRegion is returned by method locate, which can be used
to perform operations such as clicking and typing into it (see, e.g.,
method type in Figure 4).

Thus, in Sikuli locators are always images. While using DOM-
based tools it is possible to verify whether an HTML element con-
tains textual information (see the last line in Figure 3), with visual
tools it is necessary to check that the page contains an image display-
ing such text (see Figure 4, method checkLoggedUser). Moreover,
some useful and quite general WebDriver methods are not natively
available in Sikuli (e.g., click() and sendKeys()). Thus, when using
Sikuli, they must be implemented explicitly in the page object class

public class HomePage {

 private String path = "locators/HomePage/";
 private Target username
 = new ImageTarget(new File(path+"username.png"));

 private Target password

 = new ImageTarget(new File(path+"password.png"));

 private Target login

 = new ImageTarget(new File(path+"login.png"));

 private Target loggedUser

 = new ImageTarget(new File(path+"loggedUser.png"));

John.Doe
 public HomePage(){}

 public void login(String UID, String PW){
 type(username, UID);
 type(password, PW);
 click(login);
 }

 public Boolean checkLoggedUser(){
 ScreenRegion ris = locate(loggedUser);
 if (ris == null) return false; else return true;
 }

 public ScreenRegion locate(Target element){
 ScreenRegion screen = new DesktopScreenRegion();
 ScreenRegion ris = screen.find(loggedUser);
 Mouse mouse = new DesktopMouse();
 while (ris == null){
 mouse.wheel(1,2); //scroll down
 ris = screen.find(loggedUser);
 if (page.endOfPageReached()) return null;
}

 return ris;
 }

 public void click(Target element)
 throws ElementNotFound{
 Mouse mouse = new DesktopMouse();
 ScreenRegion ris = locate(element);
 if (ris == null) throw new ElementNotFound();
 mouse.click(ris.getCenter());
 }

 public void type(Target element, String value)
 throws ElementNotFound{
 click(element);
 Keyboard keyboard = new DesktopKeyboard();
 keyboard.type(value);
 }
}

L
o

c
a

to
rs

D

e
c

la
ra

ti
o

n
s

P
O

M

e
th

o
d

s

A
u

x
il

ia
ry

V

is
u

a
l
 M

e
th

o
d

s

Figure 4: HomePage page object in Sikuli API

(e.g., the methods click() and type()). The source code reported in Fig-
ure 3 and Figure 4 is very similar to the one we have used/obtained
respectively as source/target of our transformation with PESTO.

3. APPROACH AND TOOL DESCRIPTION
The aim of PESTO (PagE object tranSformation TOol) is con-

verting a DOM-based web test suite, created using WebDriver and
adopting the page object (PO) pattern, into a visual web test suite
based on the Sikuli image recognition capabilities and still adopting
the PO pattern. While we developed PESTO to transform Web-
Driver test suites to Sikuli, the techniques and architectural solu-
tions adopted for its implementation are quite general and can be
easily used within any web test transformation activity involving
abstractions similar to the ones provided by the PO.

PESTO executes the transformation by means of two main mod-
ules (see Figure 5):
– Visual Locators Generator (Module 1) This module generates a
visual locator for each web element used by the DOM-based test
suite. The details about this step are reported in Section 3.2.
– Visual Test Suite Transformer (Module 2) This module trans-
forms the source code of the DOM-based test suite in order to adopt
the visual approach. In particular, the majority of the changes are
concentrated in the page objects code, since page objects are respon-
sible for the interaction with the web pages. The details about this
step are reported in Section 3.3.

DOM-based Test Suite
(Well-Formed)

Test PO

Visual Test Suite

Images Test’ PO’

 Visual Locators Generator

Generate a Visual Locator for each

WebElement located

by a DOM-based Locator

 Test Suite Transformer

Transform the DOM-based Test Suite in a

Visual Test Suite

Source

(input)

Target

(output)

Locators

Mapping

Module 1

Images

Module 2

Figure 5: High Level Architecture of PESTO

For the interested reader, a demo video of PESTO and the source
code can be found at http://sepl.dibris.unige.it/2014-PESTO.php. This
paper extends our previous work [13] providing a deeper description
of the approach, more details on the tool implementation and an
empirical evaluation of PESTO on four applications.

3.1 Choosing the Commands to Transform
Test suites developed with Selenium WebDriver make use of a

wide selection of commands, to control the browser and perform
operations on the web elements (e.g., clicking a button or writing in
a text field). Even if our future goal is to deal with all commands
offered by WebDriver, in this initial work we chose to focus on the
automatic transformation of the locator instructions and of the most
used web element interaction commands [4]. We based the analysis
of the commands occurrences in an open source test suite4 created
for a real size web application: Moodle.

We discovered that in this test suite there are 154 click(), 49
sendKeys(), 20 getText(), 25 selections of an option in a drop-down
list, 2 clear() used to clear text boxes and areas already filled. We
noticed that 223 over a total of 250 command calls used in this
DOM-based test suite (i.e., 89,2%) can be managed by means of
only three commands (i.e., click(), sendKeys(), and getText()). This
is not surprising since the most common interactions with a web
application are actually: clicking (e.g., a link, a button), typing
(e.g., in a text box, area), and reading (e.g., the string displayed
by a web element). We obtained similar results in a test suite we
developed during a previous industrial work [9]. In that case the
click(), sendKeys(), and getText() commands represented 74,9% of
all the commands used. Thus, we decided to create a preliminary
version of PESTO able to deal with these three most used commands.

3.2 Visual Locators Generator (Module 1)
To capture the images corresponding to the target web elements,

as rendered by the browser at run time, we need to intercept the
commands of the test cases while they are executing. For this reason,
for the implementation of Module 1 of PESTO, we adopted the

4https://github.com/moodlehq/functional-test-suite

aspect-oriented programming paradigm (in particular, the AspectJ5

language). In this way, PESTO is able to intercept calls to the
three most used WebDriver commands and create the corresponding
visual locators. Figure 6 summarizes the activities carried out by
Module 1. The detailed steps of Module 1 are as follows:
1) During the execution of the test suite, WebDriver interacts with
the web elements of the application under test. For instance, it can
click on a link or a button using the click() command, fill a textBox
or a textArea using the sendKeys(...) command, or retrieve the text
shown by a web element using getText().
2) The AspectJ sub-module intercepts these calls (e.g., the call to
sendKeys(...), used to fill a textbox) before they are carried out,
by means of a before advice in AspectJ), and for each of them it
performs steps 3–6, indicated with numbered arrows in Figure 6
and detailed below, in order to generate a visual locator for the web
element of interest, e.g., the username textBox. If a visual locator
for the current web element already exists, the locator generation
process for this web element ends (e.g., the visual locator for the
username textBox is reused by each test case upon login).
3) The AspectJ sub-module calls a WebDriver method that returns a
screenshot of the entire web page (e.g., the login page) containing
the web element of interest (e.g., the username textBox).
4) The AspectJ sub-module calls a WebDriver method that returns
the following information about the rendered web element: (i) the
coordinates of the top left-hand corner and (ii) its size (i.e., width
and height).
5) The AspectJ sub-module invokes the Visual Locator Creator that
is able to generate a visual locator for the web element of interest.
As shown in Figure 6, often an image representing only the web
element cannot be considered a locator, since it cannot uniquely
locate it. For instance, this happens with forms, in which usually
all text boxes have the same size and appearance. In these cases,
multiple matches would be found for the perfectly cropped image
representing the web element. For this reason, in such cases the
Visual Locator Creator expands the size of the rectangle image
until a unique locator is found (n expansion steps are indicated in
Figure 6). The only requirement is that the web element of interest
must be kept at the geometric centre of the visual locator, since
Sikuli executes the click at the centre of the area that matches the
visual locator.
6) The AspectJ module saves the association between DOM-based
locator and visual locator. In detail, for each web element the saved
mapping consists of a triple:

(PO Name, Locator Type and Value, Image Path)
like for instance:

(HomePage, id="UID", HomePage/username.png)
7) When the test suite execution is completed, the Visual Locators
Generator provides two outputs: (1) a set of folders, one for each
page object, containing the saved images (i.e., visual locators), and
(2) a mapping file that associates the DOM-based locators to their
corresponding visual locators.

3.3 Test Suite Transformer (Module 2)
Module 2, starting from the information provided by the first

module, transforms the DOM-based test suite into a visual one as
summarized in Figure 7.

The source code transformation has been implemented using the
JavaParser6 library. The Test Cases Transformation module modifies
the test cases source code in order to use the new visual page objects
(PO’) instead of the original DOM-based page objects (PO). This

5http://eclipse.org/aspectj/
6https://code.google.com/p/javaparser/

Web Browser

Test Suite

Visual Locators Generator (Module 1)

AspectJ sub-module

Intercept

click(),

sendKeys(…)

and getText()

calls

Save

Full

WebPage

Screenshot

Compute

WebElement

Coordinates

and Sizes

Create

Visual

Locator

Visual Locator Creator

WebPage
ScreenShot

+
WebElement
Coordinates
and Sizes

WebElement
Visual

Locator

Test

PO

expand the candidate visual locator until

only a match is present

 Found 2 Matches

 Found 1 Match

Selenium WebDriver

Save

Visual

Locator

DOM-based

to Visual

Locator

Mapping

Images

1

2

3 4 5
6

7

e.g., Test XYZ executes

 username.sendKeys (‘Admin’)

Web Element: username

Coordinates: x = 12 , y = 24

Sizes: w = 272 , h=32

1° step

n° step

Source

. . .

Figure 6: Module 1: Visual Locators Generator

step requires to change a few import instructions, so as to replace the
old POs with the new ones. Then, the Page Objects Transformation
module transforms the DOM-based page objects into new visual
page objects, by executing the following three steps.
– Replace DOM-based WebElements Declarations. In this step,
each declaration of a WebElement located by a DOM-based locator
is removed from the page object and replaced with the declaration
of an ImageTarget that points to the image representing the visual
locator. For example, in the case of username (see Figure 3 and
Figure 4) we have the following transformation (the arrow means
“is transformed to”):

@FindBy(id="UID")
private WebElement username;

→
private Target username

= new ImageTarget(new File(path+"username.png"));

using the information found in the mapping file:

(HomePage, id="UID", HomePage/username.png)
The result of this transformation is also apparent in our running

example, Figure 3 and Figure 4 (Locators Declarations portion).
– Insert Auxiliary Visual Methods. As already mentioned, Sikuli
provides only methods to simulate low-level mouse and keyboard op-
erations, through its mouse and keyboard interfaces. For instance, it
is not possible to write directly inside an input field using something
similar to the WebDriver command sendKeys(...). To address this
issue, we automatically generate some auxiliary methods (locate(),
click(), and type()) that simulate the ones provided by WebDriver.
Figure 4 (Auxiliary Visual Methods portion) shows a simplified out-
put of this transformation, where minor details, such as, e.g., the
Thread.sleep(...) calls — necessary to wait for page loading — are
omitted. The following three auxiliary methods are automatically
inserted into the new visual page objects (PO’):

locate(). Sikuli interacts with a web element only if it is currently
displayed on the screen. The locate() method searches the target

Test Suite
(Visual)

DOM-based to

Visual Locator

Mapping

Images

Test Cases Transformation

Test Suite
(DOM-based)

Test

PO

Modify the Test Cases source code in order to use the

new Visual Page Object (PO’) instead of the original

DOM-based page object (PO)

Page Objects Transformation

Replace DOM-

based

WebElements

Declarations

Insert Auxiliary

Visual Methods

Transform PO’s

DOM-based

Methods in

Visual Methods

Test’

PO’

Test Suite Transformer (Module 2)

Target

Source

Figure 7: Module 2: Test Suite Transformer

element in the visible portion of the page by applying the Sikuli
image recognition algorithm. If the target element is not present,
the method automatically scrolls the page down and repeats the
search. If the end of the page is reached (i.e., the scroll does not
modify the page visualization anymore) and no match is found,
the search fails and null is returned.
click(). In this case it is necessary to: (1) locate the web ele-
ment; and, (2) click on it. The first step is done by calling the
above defined method locate(). Then, a click is triggered at the
central point where the match is found. If no match is found, an
ElementNotFound exception is raised.
type(...). In this case it is necessary to: (1) locate the web element;
(2) click on it; and, (3) type into it. The first two steps are done by
calling the above defined method click(). Then, it is sufficient to
use the keyboard interface of Sikuli.

– Transform PO’s DOM-based Methods into Visual Methods.
Each method of the page object is transformed in order to adopt the
visual approach. For instance, each call to the sendKeys method pro-
vided by WebDriver (e.g., username.sendKeys(“Admin”)) becomes a
call to the new visual method (type(username, “Admin”)). Note that,
in the case of the WebDriver test suite, username is a WebElement (a
specific WebDriver type) located using a DOM-based locator, while
in the Sikuli test suite, username is an ImageTarget representing the
visual locator (i.e., an image). In detail, the transformed method
calls are:

webElement.click() → click(webElement)
webElement.sendKeys(...) → type(webElement,...)
return webElement.getText().contains(name);

→
ScreenRegion ris = locate(webElement);
if (ris == null) return false; else return true;

The input/output of this transformation can be seen in Figure 3
and Figure 4 (PO Methods portion), for our running example.

For the test case assertions we adopt a specific transformation
template. In particular, PESTO assumes that each assertion contains
a call to a page object method that takes in input the expected textual
value (the string to match with the text contained in a web element)
and returns a boolean value (in practice we used the JUnit assertTrue
statement). Thus, the comparison between the expected value and
the actual text contained in the web element is executed in the page
object (e.g., see the assertion implementation in the WebDriver test
case shown in Figure 2 and the corresponding PO method shown
in Figure 3). Our transformation produces a visual page object
where each textual match in the original assertions becomes an
image match. In this way, we maintain a similar semantics as that of
getText(...), even if the command execution is not exactly the same,
since an image is provided as expected value instead of a string.
Indeed, the assertions of the DOM-based test cases check that the
value of the expected string is contained in the target web element,
while in the case of the visual test cases the assertions check that the
target web element is displayed in the web page with the expected

visual appearance. Generation of the images that replace the strings
used in the assertions is performed automatically by Module 1.

4. PRELIMINARY EVALUATION
This section describes the experimental results obtained by ap-

plying PESTO to four test suites developed to test the most relevant
functionalities of four open-source web applications. In particu-
lar, our empirical study aims at answering the following research
questions:
RQ1 (automation): Is the migration process fully automated? Is
any manual intervention required to compile and execute the mi-
grated test suites?
RQ2 (correctness): Do the migrated test suites locate and interact
with the web elements under test correctly? Do assertions check
each test case outcome correctly?

4.1 Web Applications
We selected and downloaded four open-source web applications

from SourceForge.net. We have included only applications that:
(1) are quite recent, so that they can work without problems on the
latest versions of Apache, PHP and MySQL, technologies we are
familiar with (actually, since WebDriver and Sikuli implement a
black-box approach, the server side technologies do not affect the
results of our study); (2) are well-known and used (some of them
have been downloaded more than one hundred thousand times last
year); and (3) belong to different application domains.

Table 1 reports some information about the selected applications.
We can see that all of them are quite recent (ranging from 2008
to 2013). They are considerably different in terms of number of
source files (ranging from 63 to 835) and number of lines of code
(ranging from 4 kLOC to 285 kLOC, considering only the lines of
code contained in the PHP source files, comments and blank lines
excluded).

4.2 Experimental Procedure
For each of the four selected applications, the following steps

have been performed:
– DOM-based Test Suite Development. A DOM-based test suite
has been developed by two of the authors in the context of prior
empirical work on web testing [10] and independently of the present
work on test suite migration, when PESTO was not even planned
to exist. A systematic approach was adopted for test suite creation,
consisting of three steps: (1) the main functionalities of the target
web application have been identified from the available documenta-
tion; (2) each discovered functionality has been covered by at least
one test case (a meaningful name was assigned to each test case,
so as to keep the mapping between test cases and functionalities);
(3) each test case has been implemented with WebDriver. The test
suite adopts the Page Object and Page Factory patterns, and contains
only assertions on web elements that are rendered visually (indeed,
assertions on hidden fields would be quite problematic to migrate to
any visual testing tool).

Table 1: WEB APPLICATIONS FROM SourceForge.net

Vers. Date File
a

kLOC
b

PPMA
c password manager sourceforge.net/projects/ppma/ 0.2 2011 93 4

Claroline learning environment sourceforge.net/projects/claroline/ 1.11.5 2013 835 285

Address Book address/phone book sourceforge.net/projects/php-addressbook/ 8.2.5 2012 239 30

MRBS meeting rooms manager sourceforge.net/projects/mrbs/ 1.2.6.1 2008 63 9

c
 Without considering the source code of the framework used by this application (Yii framework - http://www.yiiframework.com/)

Description Web Site
Release Info

a
 Only PHP source files were considered

b
 PHP LOC - Comment and Blank lines are not considered

Table 2: DOM-BASED TEST SUITES

click() sendKeys() getText() others

PPMA 18 4 687 52 23 29 12 2

Claroline 19 4 645 65 46 25 17 4

Address Book 16 5 576 52 23 14 13 3

MRBS 15 7 648 44 25 13 16 1

68 20 2556 213 117 81 58 10

a
 Java LOC - Comment and Blank lines are not considered

WebDriver

Web Element

WebDriver Command CallsTest

Cases

Page

Objects
LOC

– DOM-based Test Suite Transformation. The DOM-based test
suite has been executed in order to allow the Visual Locators Gener-
ator (Module 1) to create the visual locators and the mapping file.
Then, the Visual Test Suite Transformer (Module 2) has generated
the visual test suite.
– Visual Test Suite Evaluation. The freshly generated visual test
suite has been executed to check its correctness.

4.3 Experimental Results and Discussion
Table 2 summarizes the most important information about the four

DOM-based test suites. In particular, each test suite has from 15 to
19 test cases and from 4 to 7 page objects. The sizes of the four test
suites, measured as lines of Java code, are quite similar, ranging from
576 to 687 LOCs. The number of WebDriver WebElements, used to
declare the web elements the test cases interact with ranges from 44
in the case of MRBS to 65 in the case of Claroline. Columns 5-7
report, respectively, the number of click(), sendKeys(), and getText()
command calls used in each test suite. The last column reports the
number of other command calls employed to interact with various
kinds of elements, currently not handled by PESTO (only 10 out
of 266). These are: select an element of a drop-down list (two
cases), click the OK button of an alert window (seven cases), clear
an already filled text box (one case).
– RQ1. All the 256 handled command calls (click() (117), send-
Keys() (81), and getText() (58)) used in the target DOM-based test
suites have been transformed automatically into their corresponding
visual versions. Moreover, for all the 213 WebDriver WebElements,
located by DOM-based locators, PESTO was able to automatically
generate a corresponding visual locator. It should be noticed that
the total number of command calls is higher than the number of
WebElements since the same WebElement can be used in different
methods by different calls. In our experiments, PESTO was not able
to transform only 10 command calls (last column of Table 2) out of
266. In these ten cases, PESTO simply copied the commands from
the original test suite to the output test suite, hence creating a hybrid
test suite. This means that the resulting test suite can be compiled
and executed without requiring any manual intervention. However,
in such cases the generated test suite contains also DOM-based
commands. To turn it into a fully visual, 3rd generation test suite,
the ten commands that are currently not handled by PESTO should
be transformed manually. The migrated test suites contain 96.2%
of visual command calls and just 3.8% of residual DOM-based
command calls.

Figure 8: Examples of visual locators automatically generated
by PESTO for the Claroline web application

– RQ2. According to our manual analysis, there were no web el-
ement localisation, interaction or assertion errors in the resulting
test suites. When we executed the generated test suites we had the
same results obtained with the original DOM-based ones. In sum-
mary, PESTO was able to automatically produce four compilable,
executable and fully working test suites.
Locators Readability: The Visual Locators Generator algorithm
of PESTO has been designed to mimic the visual selection strategy
of a human tester, i.e., crop a rectangle area around the element of
interest, together with specific visual features. The authors anal-
ysed manually the visual locators generated by PESTO, finding
them highly understandable, since it was easy to retrieve the corre-
sponding target elements on the web page (see some examples in
Figure 8).

4.4 Threats of Validity of the Study
The main threat to validity that affect this study is authors’ bias.

The authors’ bias concerns the involvement of the authors in manual
activities conducted during the empirical study and the influence of
the authors’ expectations about the empirical study on such activities.
In our case, two of the authors developed the input test suites before
the tool PESTO was conceived, as part of another research work. It
might be the case that other testers, asked to follow the procedure
described in Section 4.2, would have developed test suites resulting
in a different percentage of residual DOM-based commands left in
the migrated test suites (3.8% in our case). However, the answers to
RQ1 and RQ2 would be largely unaffected, since most locators that
are handled by PESTO would be probably the same as those used by
the two authors.

5. UPCOMING IMPROVEMENTS
Although PESTO is able to handle the three most widely used

WebDriver commands, it is not yet complete and it has some limita-
tions that we plan to address in the near future. In particular, current
limitations concern: (i) the set of handled WebDriver commands,
(ii) the prerequisites required by PESTO about the input test suites
(e.g., the structure of assertions, see Section 3.3), (iii) web elements
that require a complex visual interaction and (iv) web elements that
change their visual appearance during the execution of a test suite.
We are gradually extending the set of commands and assertions
supported by PESTO, hence addressing (i) and (ii). The other two
issues ((iii) and (iv)) are more demanding:

Elements with Complex Interaction. PESTO is currently not able
to handle complex web elements, such as drop-down lists and multi-
level drop-down menus. For instance, let us consider a registration
form that asks for the nationality of the submitter. This can be im-
plemented using a drop-down list containing a list of countries. A
DOM-based tool like WebDriver can provide a command to select
directly an element from the drop-down list (only one locator is
required). On the contrary, when adopting a visual approach, the
task is much more complex. One has to: (1) locate the drop-down
list (more precisely the arrow that expands the list) using an image
locator; (2) click on it; (3) if the required list element is not shown,

locate and move the scrollbar (e.g., by clicking the arrow); (4) lo-
cate the required element using another image locator; and, finally,
(5) click on it. Actually, in this case the visual approach performs
exactly the same steps that a human tester would do. PESTO will
be improved to automatically generate such complex interaction
sequence.

Web Elements Changing their State. When a web element changes
its state (e.g., a check box is checked or unchecked, or an input field
is emptied or filled), a visual locator must be created for each state,
while with the DOM-based approach only one locator is required.
Since PESTO currently associates only one visual locator to each
DOM-based locator, it is not able to interact more than once with
a web element that changes its visual appearance upon interaction.
A solution to this limitation consists in associating multiple visual
locators to each DOM-based locator in case the target web element
changes its appearance. This can be done by using, for instance, the
Sikuli MultiStateTarget7 construct.

6. RELATED WORK
To the best of our knowledge, no automated transformation tool

exists for the creation of 3rd generation web test suites from 2nd
generation. PESTO is the first attempt to assist the tester in the
thorny task of transforming a DOM-based test suite towards one
employing visual recognition capabilities. Even though there is
no strictly related work, some related papers have been published
in the context of refactoring. Deiß [6] describes TTtwo2three, an
automatic tool for the conversion of TTCN-2 test systems to TTCN-
3 at Nokia. The tool realises semantic and syntactic transformations,
but some manual refactoring is needed to ensure that the test cases
behave as expected. TTtwo2three has been used to convert two
industrial test suites, a Bluetooth Serial Port Profile and a UMTS
network element, consisting of about 2,500 test cases. Chu et al. [5]
propose a tool to guide test case refactoring after having applied
well-established pattern-based code refactoring. While refactoring
the application, using a series of patterns, the plugin records all
the useful steps and information. This allows the plugin to create
a mapping relationship between pattern refactoring and test case
refactoring. Such mapping is used to transform the test case source
code automatically, in accordance with the source code refactorings.
Ricca et al. [12], automate the reengineering of web applications
adopting the DMS Reengineering toolkit, a program transformation
system, and evaluate its applicability to a real world case study.
Ding et al. [7] propose a black-box approach for testing of web
applications after migration towards a new technology (e.g., a cloud
system) without manually creating test cases. Responses of the
migrated application are automatically compared against those from
the original production one. Possible mismatches due to migration
problems can be detected automatically.

7. CONCLUSIONS AND FUTURE WORK
This work proposed and experimented PESTO, a tool able to

automatically transform DOM-based web test suites developed using
Selenium WebDriver into visual test suites relying on the usage of
Sikuli API. Current version of PESTO handles the three most widely
used DOM-based commands: click(), sendKeys() and getText(). If
present, any other DOM-based command is simply copied to the
target test suite, which becomes a hybrid DOM-based / visual test
suite. In our empirical study, PESTO was able to migrate 96.2%
of the commands used in existing test suites. We are extending
PESTO in order to cover the remaining 3.8% residual DOM-based
commands.
7https://code.google.com/p/sikuli-api/wiki/MultiStateTarget

PESTO has been validated on four DOM-based test suites, used
to test four different web applications. The visual test suites pro-
duced automatically by PESTO have been compiled and executed
with no need for manual interventions or adjustments, since the
automatically transformed test cases exhibited the correct, expected
behaviour. The visual locators automatically generated by PESTO
have been checked for readability and they appeared easy to under-
stand. In our future work, we intend to improve PESTO in order to
handle: (1) web elements with complex interaction (e.g., drop-down
list), (2) web elements changing their state.

8. REFERENCES
[1] E. Alegroth, M. Nass, and H. H. Olsson. JAutomate: A tool

for system- and acceptance-test automation. In Proc. of 6th
International Conference on Software Testing, Verification
and Validation (ICST 2013), pages 439–446. IEEE, 2013.

[2] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using
computer vision. In Proc. of 28th Conference on Human
Factors in Computing Systems (CHI 2010), pages 1535–1544.
ACM, 2010.

[3] P. Chapman and D. Evans. Automated black-box detection of
side-channel vulnerabilities in web applications. In Proc. of
18th Conference on Computer and Communications Security
(CCS 2011), pages 263–274. ACM, 2011.

[4] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter.
Prevalence and maintenance of automated functional tests for
web applications. In Proc. of 30th Int. Conference on Software
Maintenance and Evolution (ICSME 2014). IEEE, 2014.

[5] P.-H. Chu, N.-L. Hsueh, H.-H. Chen, and C.-H. Liu. A test
case refactoring approach for pattern-based software
development. Software Quality Journal, 20(1):43–75, 2012.

[6] T. Deiß. Refactoring and converting a ttcn-2 test suite.
International Journal on Software Tools for Technology
Transfer, 10(4):347–352, 2008.

[7] X. Ding, H. Huang, Y. Ruan, A. Shaikh, B. Peterson, and
X. Zhang. Splitter: A proxy-based approach for
post-migration testing of web applications. In Proc. of
EuroSys 2010, pages 97–110. ACM, 2010.

[8] L. Hayes. The Automated Testing Handbook. Software Testing
Institute, 2004.

[9] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving
test suites maintainability with the page object pattern: An
industrial case study. In Proc. of 6th International Conference
on Software Testing, Verification and Validation Workshops
(ICSTW 2013), pages 108–113. IEEE, 2013.

[10] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella.
Capture-replay vs. programmable web testing: An empirical
assessment during test case evolution. In Proc. of 20th
Working Conference on Reverse Engineering (WCRE 2013),
pages 272–281. IEEE, 2013.

[11] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs.
DOM-based web locators: An empirical study. In
S. Casteleyn, G. Rossi, and M. Winckler, editors, Proc. of
14th International Conference on Web Engineering (ICWE
2014), volume 8541 of LNCS, pages 322–340. Springer, 2014.

[12] F. Ricca, P. Tonella, and I. D. Baxter. Web application
transformations based on rewrite rules. Information &
Software Technology, 44(13):811–825, 2002.

[13] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. PESTO: A tool
for migrating DOM-based to visual web tests. In Proc. of 14th
International Working Conference on Source Code Analysis
and Manipulation (SCAM 2014), pages 65–70. IEEE, 2014.

