
Copyright:

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Why Creating Web Page Objects Manually If It Can

Be Done Automatically?

Andrea Stocco, Maurizio Leotta, Filippo Ricca, Paolo Tonella

Abstract:

Page Object is a design pattern aimed at making web test scripts more readable, robust and

maintainable. The effort to manually create the page objects needed for a web application

may be substantial and unfortunately existing tools do not help web developers in such task.

In this paper we present APOGEN, a tool for the automatic generation of page objects for

web applications. Our tool automatically derives a testing model by reverse engineering the

target web application and uses a combination of dynamic and static analysis to generate Java

page objects for the popular Selenium WebDriver framework. Our preliminary evaluation

shows that it is possible to use around 3/4 of the automatic page object methods as they are,

while the remaining 1/4 need only minor modifications.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/AST.2015.26

Why Creating Web Page Objects Manually If It Can
Be Done Automatically?

Andrea Stocco1, Maurizio Leotta1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

andrea.stocco@dibris.unige.it, maurizio.leotta@unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—Page Object is a design pattern aimed at making
web test scripts more readable, robust and maintainable. The
effort to manually create the page objects needed for a web
application may be substantial and unfortunately existing tools
do not help web developers in such task.

In this paper we present APOGEN, a tool for the automatic
generation of page objects for web applications. Our tool automat-
ically derives a testing model by reverse engineering the target
web application and uses a combination of dynamic and static
analysis to generate Java page objects for the popular Selenium
WebDriver framework. Our preliminary evaluation shows that
it is possible to use around 3/4 of the automatic page object
methods as they are, while the remaining 1/4 need only minor
modifications.

Index Terms—Web Testing, Page Object Pattern, Testware
Evolution, Program Analysis, Reverse Engineering, Selenium
WebDriver.

I. INTRODUCTION

Developing large web applications is a challenge for any
company. In today’s fast moving environment, the effort to adapt
a software system running on the web to requirement changes
is continuous. This poses serious issues in the maintenance
and testing of web systems, demanding for increased levels
of automation. For these reasons, test automation tools have
become popular in the industry during the last 10 years and
across a great variety of testing tasks such as regression, system
or GUI testing. Automated tests can be run fast and frequently,
making them quite cost-effective for web software with a
medium to long expected maintenance and evolution life.

Despite their wide adoption, test automation techniques
bring the problem of maintaining test scripts during software
evolution – an issue well-known by practitioners. While there
are interesting research contributions that try to address the
testware evolution problem [1], [5], [6], [10], [12], we are far
from a consolidated solution.

Among the practical approaches to cope with the main-
tenance of test scripts, the adoption of software engineering
best practices, such as design patterns, is receiving substantial
attention. Particularly famous in web testing is the Page
Object design pattern, which aims at improving the test suite
maintainability by reducing the duplication of code across
test cases. A page object is a class that represents the web
page elements as a series of objects and encapsulates the
functionalities of the web page in methods. The use of the Page
Object pattern reduces the coupling between web pages and
test cases, promoting reusability, readability and maintainability
of the latter. A recent work has empirically shown the benefits

associated with the adoption of the Page Object pattern in the
maintenance of web test suites in an industrial environment [3].

Implementation of page objects is usually done either:
(i) manually, or (ii) semi-automatically with the support of
tools which are still very limited, as described in the paper.

In this paper we consider the problem of the automatic
generation of page objects for web applications. This problem is
challenging and no automatic and effective solution exists. Our
approach aims at automatically reverse engineering a testing
model, through a combination of dynamic and static analysis
of the application under test (AUT). The application is reverse-
engineered to expose its internal structure and functionalities,
in order to gather useful information, that is used for the
generation of the source code of the page objects. Our approach
is implemented in a Java open-source prototype tool, APOGEN
(Automatic Page Objects Generator). To our knowledge, there
are research contributions using reverse engineering techniques
for testing and analysis purposes [2], [7], [9], [11], but none
of them specifically address the problem of the automatic
representation of a web application into page objects, so as to
improve the modularity and reusability of a test suite.

We compared a set of page objects automatically generated
by APOGEN with the ones manually created by a human tester
for the PHP AddressBook web application in the context of a
previous work [4]. Preliminary results indicate that our approach
is viable, pretty accurate and potentially saving precious time
otherwise required for manual page object creation: 75% of the
functionalities of the automatic page objects needs no correction,
i.e., they are ready for use, while the remaining 25% needs
minor modifications.

The paper is organised as follows: Section II provides
some background on the Page Object design pattern and the
tools available to help developers in the page objects creation.
Section III describes our approach and the tool APOGEN.
Section IV presents the initial experimental results that evaluate
the effectiveness of APOGEN, as well as its limitations and the
future work we plan to carry out on the tool. Conclusions are
drawn in Section V.

II. BACKGROUND

This section introduces the Page Object design pattern and
explains why its adoption in test suites for web applications
brings considerable advantages. In addition, we briefly classify
the tools available on the market to assist testers in the
implementation of the Page Object pattern in the test code,
together with their limitations.
Specification vs Implementation. Without the adoption of any
design pattern, automated test scripts may result in test code that

Username

Password

Submit

Login

Register

Reset

Register

Reset

Web Element Action

Navigation

Fig. 1. Login page of PHP AddressBook and associated Web Elements and
Functionalities (i.e., Actions and Navigations)

is difficult to maintain and evolve. One of the main reasons
is the duplication of code among the test cases. When the
same functionality must be necessarily invoked within multiple
test cases (e.g., login), this results in some code fragment
being scattered across test cases. Such code fragment includes
implementation details (e.g., sendKeys(username, “admin”))
that are therefore duplicated instead of being shared and
reused. Indeed, there is an important distinction between the
specification of what to test versus the implementation of
how to test it: the lack of a proper abstraction for recurring
functionalities makes the two notions collide.

Let us consider the running example in Fig. 1, displaying
the index page of the PHP AddressBook web application1. A
test specification might be: “When the user enters the correct
username and password and clicks the login button, she/he is
logged in and can access the home page”. This describes a
scenario – a specification of what the test should do. However,
the test implementation has to deal with entities like: the
username field is named “username”, the password field is
named “password”, the login button is found via the CSS
“#loginForm > input::nth-child(3)”. If the layout of the login
page is modified, the test specification does not change (users
still need to provide credentials and click the login button),
whereas the implementation almost certainly needs the tester
intervention to correct all test cases affected by the change.

Separating test specification from test implementation makes
tests more robust and maintainable. For instance, if the login
functionality changes, testers would like to modify only a single,
reused code fragment, instead of changing every single test
that requires the user to login.
Page Object and Page Factory. The test specification can be
separated from its implementation by using the Page Object
design pattern. With its introduction, all the implementation
details are moved into the page objects, a bridge between web
pages and test cases, with the latter only containing the test
logics. Page Objects serve as an interface of the web application:
they represent the GUIs as a series of object-oriented classes
that encapsulate the features offered by each page into methods.

For instance, for the web page of Fig. 1 we can identify the
Web Elements, i.e., the GUI entities on which a user can interact,
and the Functionalities associated to them, i.e., the behaviours
triggered after that an event has occurred on a web element
(e.g., click on the Register link performs a navigation and brings
the user to the registration page). In Fig. 2 (a), we can see
how these information are represented in a sample page object
implemented upon the Selenium WebDriver framework2: each
GUI element is represented as a WebElement class instance,

1http://sourceforge.net/projects/php-addressbook/
2http://docs.seleniumhq.org/projects/webdriver/

public class Index {
 private WebDriver driver;
 @FindBy(xpath = "/html[1]/body[1]/div[1]/div[4]/a[1]")
 private WebElement register;
 @FindBy(xpath = "/html[1]/body[1]/div[1]/div[4]/a[2]")
 private WebElement reset;
 @FindBy(css = "#LoginForm > input:nth-child(2)")
 private WebElement user;
 @FindBy(css = "#LoginForm > input:nth-child(5)”)
 private WebElement pass;
 @FindBy(css = "#LoginForm > input:nth-child(7)")
 private WebElement accesso;
 public Index(WebDriver driver) {
 this.driver = driver;
 PageFactory.initElements(driver, this);
 }
 public UserAdd goToRegister() {
 register.click();
 return new Register(driver);
 }
 public EmailPassword goToReset() {
 reset.click();
 return new Reset(driver);
 }
 public void loginForm(String args0, String args1) {
 user.sendKeys(args0);
 pass.sendKeys(args1);
 accesso.click();
 }
}

public class YourPageObjectName {

 private WebDriver driver;

 @FindBy(xpath = “//*[@id=“LoginForm”]/input[1]“)
 public WebElement username;

 @FindBy(xpath = “//*[@id=“LoginForm”]/input[2]“)
 public WebElement password;

 @FindBy(xpath = “//*[@type=“submit
 and @value=“Accesso”]”)

 public WebElement accesso;
}

public class Page {

 @FindBy(how=How.XPATH, using= “name(\”username\”)“)
 public WebElement emailTextBox;

 @FindBy(how=How.XPATH, using= “name(\”password\”)“)
 public WebElement passwordTexBox;

 @FindBy(how=How.XPATH, using= “name(\”Accesso\”)“)
 public WebElement loginButton;
}

(b)

(c)

(a)
Fig. 2. Comparison between a page object generated by APOGEN (a) and those
of OHMAP (b) and SWD Page Recorder (c) for the login page in Fig. 1

properly named and annotated with a @FindBy annotation
containing the locator, i.e. the specification of how to identify
such web element in the GUI3. The class constructor makes use
of the Page Factory design pattern, which instantiates the page
object and pre-populates its fields based on the annotations. At
last, the page object wraps the entire login form in a method
providing the login functionality and offers two navigation
methods for the Register and Reset links.
Existing Page Object Creation Tools. Currently there exist
some open source frameworks to assist the tester during the
creation of page objects. These tools mostly wrap the HTML
content of the page and offer an aided creation of the source
code. The most important ones are:
– OHMAP4: an online website allowing users to copy HTML

code portions in a text area. The tool generates a simple
Java class containing a WebElement instance for each input
field encountered by the internal server-side static analyser.
The variable names are taken from HTML attributes and the
locators are XPaths similar to the ones generated by FirePath5,
a popular tool for the automatic generation of simple XPath
expressions for elements inside web pages.

– SWD Page Recorder6: allows users to launch a web application
and to inspect the GUI with a click&record feature: after
every click on the interface, a drop-down menu is shown for
the manual insertion of the web element variable name, while
a relative XPath locator is produced. Code export is available
for several languages (Java, C#, Python, Ruby and Perl).

– WTF PageObject Utility Chrome Extension7: assists the tester
in the creation of the page objects (limited to web elements),
by generating locators of kind: id, name, CSS, XPath. The
output code is in Python.

Despite these tools provide useful features, most of the
effort is still put on testers and suffer several limitations, in
particular: (i) only one page at a time is taken into account,
without considering any notion of dynamism or web application
structure, (ii) only a subset of web elements that can be used

3http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#locating-elements
4http://ohmap.virtuetech.de/
5https://addons.mozilla.org/en-US/firefox/addon/firepath/
6https://github.com/dzharii/swd-recorder
7https://github.com/wiredrive/wtframework/wiki/WTF-PageObject-Utility-Chrome-Extension

by a test is taken into account, (iii) the generated code are basic
class skeletons, while the key characteristic of the page objects
is to expose the web application functionalities in methods.
Especially this last important feature is completely missing in
all the tools we analysed so far. We believe that it is possible
to move the automation by far beyond the creation of a class
skeleton containing web elements, using the knowledge present
in the application itself. In Fig. 2 we report a comparison
between the page objects generated by APOGEN (a) and those
generated by tools OHMAP (b) and SWD Recorder (c). From
the figure it is evident how the approaches implemented in (b)
and (c) lack from several features (specifically, web elements
for Register and Reset links are missing, as well as methods
for any functionality). The page objects generated by APOGEN
reflect the graph structure of the AUT and are enriched with
the following features: (i) WebElement instances for each
“clickable” element (i.e., an element on which it is possible to
perform an action, e.g., links, buttons, input fields); (ii) methods
to navigate the aforementioned graph structure; (iii) methods
to fill and submit the forms. See an example in Fig. 2 (a).

Our approach aims to overcome the limitations of the
existing frameworks, offering a more complete page object
generation tool, so as to reduce substantially the testers’ manual
development effort.

III. APPROACH

This section describes the design and architecture of
APOGEN, the tool implementing our approach. For the in-
terested reader, a demo video and the source code can be found
at: http://sepl.dibris.unige.it/2015-APO.php.

APOGEN consists of three main modules (see Fig. 3): a
Crawler, a Static Analyser, and a Code Generator. The input
of APOGEN is any web application, together with the login
credentials if necessary, while the output is a set of Java files,
representing a code abstraction of the web application, organised
using the Page Object and Page Factory design patterns, as
supported by the Selenium WebDriver framework.
Crawler. In the first step we retrieve a high level representation
of the AUT to generate a state-based model of the dynamic
DOM (Document Object Model). For this we use a web crawler,
i.e., a software that is able to browse a web application and
download its pages. In particular, we used CRAWLJAX, a state
of the art open source Java tool for automatically crawling
and testing a JavaScript-based web applications [8]. We chose
CRAWLJAX because it automatically creates a state-based graph
considering the dynamic DOM states and the event-based
transitions between them. We seeded the crawler with proper
inputs, such as the URL of the AUT and specific configurations
necessary to perform an exploration of the application (in detail,
we set no limits on the crawling depth, runtime, and number of
states, albeit CRAWLJAX has an internal heuristic to determine
whether the crawl is over). Moreover, CRAWLJAX may need

Crawler Static
Analyser

Code
Generator

APOGEN
(Automatic Page Objects Generator)

Page Objects
for web app

web app

Fig. 3. High Level Architecture of APOGEN

the AUT login credentials to access the application and crawl
the states accessible only to authenticated users.
Static Analyser. When the crawling is over, CRAWLJAX returns
several outputs: the state-based graph of the web app and
information about each visited dynamic state, i.e., the URL, the
list of “clickable” elements, the DOM, a screenshot image of
the web page, the list of links to other states. These information
are parsed at runtime by the Static Analyser of APOGEN to
create the testing model of the web application. For each state:
1) The URL is parsed and trimmed to get a meaningful class
name for the page object class. In case of multiple occurrences
(e.g., dynamic pages sharing the same URL, but conceptually
in different states) an integer counter is added;
2) The web elements on which the crawler fired an event are
inserted as WebElement instances in the page object class.
For each of them, a meaningful variable name is retrieved
by parsing the textual information and the attributes of the
corresponding HTML tags. XPath or CSS locators are used to
localise the web elements;
3) The links to other states obtained from the state-based graph
are saved in the model;
4) The DOM of the state is saved and analysed to acquire
information on forms. In particular, for each form APOGEN
collects a series of data to be used for the methods generation:
(i) a meaningful name is obtained by parsing and trimming the
id, name and value attributes of the <form> HTML tag. This
will be part of the methods’ names produced in the following
code generation phase; (ii) the list of HTML elements contained
into the <form> tag, together with their associated locators, are
saved as WebElement instances.
Code Generator. The last step is to transform the model
produced by the Static Analyser into comprehensive page object
code for the Selenium framework. For each state in the model,
the Code Generator performs the following steps:
1) creates a Java class with the name obtained from the Static
Analyser (first step), a standard package name (po) and the
necessary Selenium imports.
2) creates a WebElement instance for each web element. For
all of them, a @FindBy annotation, specifying the locator, is
associated to the WebElement.
3) creates a default constructor with a Selenium WebDriver
variable to control the browser. The constructor resorts on the
PageFactory pattern to initialise all the web elements.
4) creates a navigational method for each link from the current
state towards other page objects. The return type is the target
page object.
5) creates a method for each submit button contained in each
form. In particular we distinguish two cases: whether the form
has (i) one submit button, or (ii) multiple submit buttons. In the
former case, Code Generator creates a method for populating
and submitting the form and its components (see page object
of Fig. 2 (a)). In the latter case, the form has been used as a
container for multiple web elements corresponding to different
functionalities and Code Generator creates multiple methods
to be later refined manually with the correct specification (an
example is in Fig. 4).

IV. PRELIMINARY EVALUATION

This section describes the experimental procedure and the
results obtained in a preliminary study we performed for
evaluating APOGEN.

Methods of the manual page objects Manual Automatic Kind Eq TM M
Navigate to a new Address Book ABPage Index1 NAV X
Navigate to the Groups Page ABPage Index1 NAV X
Navigate to the Birthdays Page ABPage Index1 NAV X
Navigate to the Home Page ABPage Index1 NAV X
Navigate to the Print View ABPage Index1 NAV X
Navigate to the Print Phones View ABPage Index1 NAV X
Create a new Address Book EditPage Edit ACT X
Select and Remove an Address Book EditPage Edit1 ACT X
Login into the application IndexPage Index ACT X
Assign a user to a Group IndexPage Index1 ACT X
Search into the Address Book IndexPage Index1 ACT X
Go to a new group GroupPage Group NAV X
Add a new group GroupPage Group1 ACT X
Go to edit group GroupPage Group NAV X
Edit a group information GroupPage Group3 ACT X
Select and Remove a group GroupPage Group2 ACT X
Total 4 8 – 12 4 0
Coverage – 0.75 0.25 0.00

TABLE I. Coverage (Eq = Equivalent; TM = To Modify; M = Missing)

Subject Application. In the experiment we used PHP Address
Book (ver. 8.2.5) – a PHP/MySQL-based address and phone
book, contact manager, and organiser. The application is
composed of about 30 kLOC and has been designed to be
platform and browser independent. A test suite for the subject
application was developed by a junior tester in the context of
a previous work [4]. The test suite is written in Java following
the Page Object and Page Factory design patterns, and it is used
as oracle against which we compare the results of APOGEN.
The test suite covers the application partially: it is composed
by 28 test cases and 7 page objects testing the main features
and accounts for 1472 LOCs (1078 for the test cases and 394
for the page objects).
Research Questions. Our empirical study aims at answering
the following research question:
RQ: What is the percentage of generated methods that are
(1) equivalent, (2) to be modified, or (3) missing w.r.t. the ones
available in the manual POs?
We want to understand whether automatically generated meth-
ods can be used directly, after minor modifications, or are
missing.
Experimental Procedure. First, we ran APOGEN on the subject
application. Second, we compared the methods of automatic
page objects with those of the manual test suite. We excluded
from this analysis the getters methods – those retrieving mean-
ingful textual information from the web page and potentially
useful when defining the assertions of the test cases – since are
not generated by the current, preliminary version of APOGEN. In
detail, for each page object of the manual test suite, we manually
inspected all methods (getters excluded): (i) classifying the
kind of functionality as navigational or action; (ii) determining
whether the method has a semantically equivalent counterpart in
the automatic page objects (we tag such methods as Equivalent);
(iii) determining whether the method has a counterpart in the
automatic page objects that needs minor modifications (we
tag such methods as To Modify); (iv) determining any missing
methods (we tag such methods as Missing).
Experimental Results. Table I shows the data collected to
answer RQ. It reports the page objects’ methods used by the
manually created test suite (first column), with the indication
of the page object where it has been found both in the manual
(second column) and in the automatic test suite (third column).
Moreover, the table reports (fourth column) whether each
method is a navigational method (e.g., a link towards a new

page of the application) or an action method (e.g., to login into
the application or to create a new address book entry). Finally,
the last three columns indicate if each method is tagged as
Equivalent, To Modify, or Missing.

Based on these data, we can notice that the test cases
of the original test suite covered 16 functionalities of the
subject application, for which corresponding methods have been
created in four manual page objects. APOGEN generated 12
page objects: eight of them cover the methods of the manual test
suite and are subject of this study. The different number of page
objects is explained by the fact that page objects’ generation is
performed from the Crawler output. CRAWLJAX marks a page
as a new dynamic state based on an internal heuristic – in short,
it performs a DOM comparison after a preprocessing step in
which all style, useless and dynamic elements are removed,
leaving only the main structure. CRAWLJAX performs a state
split only when it gathers evidence that the source and target
states are two different entities. For instance, the index page of
the subject application contains a login form, as visible in Fig. 1,
while the home page is drastically different (not shown on this
paper), since it displays the main content of the application.
CRAWLJAX splits these two pages into two different states,
while the manual tester decided to merge these two states and to
incorporate the login method in the IndexPage page object.

In total there are 8 Navigational and 8 Action methods.
We can notice how the methods marked as Equivalent are 12
over 16 (i.e., 75%), while 4 over 16 (i.e., 25%) need minor
modifications. An example of such modification is shown
in Fig. 4: only adding a parameter and a statement to the
automatically generated method was required to align it with
that of the manual implementation (in this case, to specify
which web element identifies the correct checkbox from a list,
so as to remove the right entry). No methods are missing.

Looking at the equivalent methods by method type, we have:
7 over 8 Navigational methods (i.e., 87.5%) and 5 over 8 Action
methods (i.e., 62.5%). Thus, the first prototype of APOGEN
is able to precisely recover almost entirely the navigations
between the page objects and a remarkable percentage of the
actions; the remaining methods require minimal corrections.
To answer RQ, in our case study:

75% of the generated methods are equivalent to those of
the manual page objects, while 25% need to be refined
and none is missing.

Page Objects Comparison. Table II shows how the methods
of the manual page objects are covered by the automatic
page objects. We can notice that for the ABPage page object,
all 6 methods are covered by those of Index1 (in this case
APOGEN’s strategy mimics exactly that of a human tester).
About the others: methods of IndexPage are distributed over
Index and Index1, EditPage’s over those of Edit and Edit1, while
GroupPage’s can be retrieved in the 4 automatic page objects
Group, Group1, Group2, and Group3.

Page Object Index Index1 Edit Edit1 Group Group1 Group2 Group3
ABPage (6) – 6 – – – – – –
IndexPage (3) 1 2 – – – – – –
EditPage (2) – – 1 1 – – – –
GroupPage (5) – – – – 2 1 1 1

TABLE II. Page Object Comparison

public Group2 goToGroup2() {
 a_DeleteGroup.click();
 return new Group2(driver);
}

public Group2 goToGroup2(WebElement who) {
 who.click();
 a_DeleteGroup.click();
 return new Group2(driver);
}

Fig. 4. Element removal from a group requires an additional, initial click on
the web element to be removed

The results of Table II offer a clue for a possible, simple
merging strategy: clustering the page objects sharing the same
name (e.g., if we merge the methods contained in Index and
Index1 in only one page object, we obtain a page object similar
to IndexPage), to get closer to those that are defined by a
human tester. Of course, there must be a balance between big
page objects containing the majority of the functionalities and
small page objects targeting only a few narrow features.
Estimated Development Effort Reduction. The manual test
suite has a total of 1472 LOCs: 1078 for the test cases and
394 for the page objects, of which 335 are equivalent to those
generated by APOGEN, 8 are to modify, 51 are for getters. By
proportion over the LOCs, we infer that the effort reduction
due to APOGEN would be about 85% (335:394=x:100) if we
consider the development of page objects only, and roughly 23%
(335:1472=x:100) for the entire test suite development. The
LOCs are correlated with the development time but not directly
proportional, hence, this rough estimate gives an approximate
idea of the benefits potentially coming from adopting APOGEN.
Limitations and Future Work. Several issues are related to
crawling the application: APOGEN relies on the performance of
CRAWLJAX, which is overall a valid choice, but it is affected
by the problems typical of any research tool. In particular,
when CRAWLJAX fails at exploring the states space of the
application, page objects are not created for those pages the
crawler is not able to reach. Another limitation of our prototype
comes from the static analysis performed to build the testing
model. Although the combination of dynamic and static analysis
has revealed to be effective in our case study, it may be not
so effective if the DOM of the application has attributes with
unintelligible names or has too few attributes on which the
page object elements can be built and named (e.g., for naming
the web elements variables, attribute names are fundamental).

In our future work we intend to analyse this issue by
studying the performance of our tool with more applications. A
further idea could be to offer testers the possibility to interact
with the tool before triggering the code generation so as to
intervene in all the cases in which APOGEN fails to retrieve
meaningful names. We will also investigate the aforementioned
page objects merging strategy, to see whether it can improve
the page objects understandability. Moreover, we intend to
augment the page objects with a set of getter methods retrieving
meaningful textual information from the web application by
the dynamic information identification in a page. This would
improve the completeness of the page objects and would provide
support for the writing of test case assertions. We plan to address
the limitation of the methods that still need to be manually
modified by recognising interaction patterns during the dynamic
analysis, so that we might be able to automatically add the
missing parameters and statements.
Threats to Validity of the Study. One threat to the validity
of our study is associated with the approach used to compare
manual and automatic page objects. To reduce this threat, we
adopted the systematic procedure described in Section IV. The
chosen application and the test suite considered in this study

may have affected the results for the RQ; the percentages,
as reported in Table I, may vary if different applications and
different test suites are considered. Finally, concerning the
generalisation of the results, we selected a real open source
web application and a test suite already used in another scientific
work, which makes the context realistic, even though further
studies are necessary to confirm and corroborate the obtained
results.

V. CONCLUSIONS

Web test cases are usually decoupled from the implemen-
tation details by means of the Page Object design pattern.
However, the manual effort to create the needed page objects
can be remarkable. We propose a novel approach to automati-
cally generate page objects for a web application and we have
implemented it in a tool named APOGEN. A preliminary study
in which we compare the generated page objects with the ones
created manually by a human tester shows that 75% of the
page object methods can be directly used by the tester for the
development of a test suite, while the remaining 25% need
only minor modifications.

Although APOGEN is still a research prototype, the approach
it implements is highly promising. In our future work, we intend
to: (i) extend APOGEN with support for the definition of test
case assertions, (ii) increase its level of automation, targeting
all the cases that currently require manual intervention, and
(iii) expand the empirical evaluation to a larger number of web
applications.

REFERENCES

[1] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. WATER: Web
application test repair. In Proc. of ETSE 2011, pages 24–29. ACM.

[2] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. Reverse engineering
web applications: The WARE approach. Journal of Software Maintenance
and Evolution, 16(1-2):71–101, 2004.

[3] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving test suites
maintainability with the page object pattern: an industrial case study. In
Proc. of 6th International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2013, pages 108–113. IEEE, 2013.

[4] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-
based web locators: An empirical study. In Proc. of 14th International
Conference on Web Engineering (ICWE 2014), volume 8541 of LNCS,
pages 322–340. Springer, 2014.

[5] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test cases
aging by means of robust XPath locators. In Proc. of 25th International
Symposium on Software Reliability Engineering Workshops (ISSREW
2014), pages 449–454. IEEE, 2014.

[6] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to
increase the robustness of web test cases. In Proc. of 8th International
Conference on Software Testing, Verification and Validation (ICST 2015).
IEEE, 2015.

[7] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajax web
applications. In Proc. of ICST 2008, pages 121–130. IEEE, 2008.

[8] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[9] C. Sacramento and A. Paiva. Web application model generation through
reverse engineering and UI pattern inferring. In Proc. of QUATIC 2014,
pages 105–115. IEEE, 2014.

[10] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,
D. D. Nagaraj, and S. Sathishkumar. Efficient and change-resilient test
automation: An industrial case study. In Proc. of ICSE 2013, pages
1002–1011. IEEE, 2013.

[11] P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.
Advances in Computers, 93:1–51, 2014.

[12] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust
test automation using contextual clues. In Proc. of ISSTA 2014, pages
304–314. ACM, 2014.

