
Copyright:

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Test Driven Development of Web Applications: a

Lightweight Approach

Diego Clerissi, Maurizio Leotta, Gianna Reggio, Filippo Ricca

Abstract:

The difficulty of creating a test suite before developing a web application is the main barrier

to the adoption of the Acceptance Test Driven Development (ATDD) paradigm.

In this work, we present a general lightweight approach and a specific instantiation based on

existing tools for acceptance test driven development of web applications. The idea, which is

the basis of our approach, is simple: using a capture/replay tool able to generate test scripts

on previously created Screen Mockups of the web application to develop. These test scripts

can be later executed against the web application, and used to drive its development

following the requirements in ATDD mode.

The presented approach has been used to re-develop the main features of an open-source web

application. Observations, limitations of the approach, and lessons learnt are outlined.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1109/QUATIC.2016.014

Test Driven Development of Web Applications: a
Lightweight Approach

Diego Clerissi, Maurizio Leotta, Gianna Reggio, Filippo Ricca
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy

diego.clerissi@dibris.unige.it, maurizio.leotta@unige.it, gianna.reggio@unige.it, filippo.ricca@unige.it

Abstract—The difficulty of creating a test suite before develop-
ing a web application is the main barrier to the adoption of the
Acceptance Test Driven Development (ATDD) paradigm.

In this work, we present a general lightweight approach and
a specific instantiation based on existing tools for acceptance
test driven development of web applications. The idea, which
is the basis of our approach, is simple: using a capture/replay
tool able to generate test scripts on previously created Screen
Mockups of the web application to develop. These test scripts
can be later executed against the web application, and used to
drive its development following the requirements in ATDD mode.

The presented approach has been used to re-develop the
main features of an open-source web application. Observations,
limitations of the approach, and lessons learnt are outlined.

Index Terms—ATDD paradigm, Screen Mockups, Capture/Re-
play tools

I. INTRODUCTION

Developing modern web applications is a big challenge
for software companies, because they undergo through ultra-
rapid development cycles, due to customers’ requests and
requirements evolution, pushing new features and bug fixes
to production within days. In this context, agile approaches
and automated testing frameworks are considered among the
best choices for web application development and quality
assurance [15].

Acceptance Test Driven Development [5] (from now, ATDD)
is a cornerstone practice that puts acceptance testing and
refactoring on top of the software development process. In
brief, ATDD is a development process based on short cycles:
first, an initial set of failing test scripts is built starting from
a feature’s specification, usually expressed by means of a
user story (i.e. a simple text description consisting of one
or more short sentences); then, some code is written to pass
each test, and finally, some refactorings are applied to improve
the structural code quality of the web application. However,
ATDD is not limited to agile contexts where requirements
can be expressed with user stories. Indeed, even more formal
requirements specifications based on use cases, such as the
one proposed by Reggio et al. [19], [20], can be used with the
ATDD paradigm. Usually, in these cases, acceptance tests are
defined by following the scenarios composing the use cases.

Even if a large number of testing tools usable in the web
applications context emerged in the last years (for instance,
Fitnium1, an integration of FitNesse2, where test cases can be

1https://fitnium.wordpress.com/
2http://www.fitnesse.org/

represented in a tabular form by using the natural language,
and Selenium IDE3, a Firefox plug-in that allows to record,
edit, and execute web test scripts), it is well-known that the
difficulty of creating a test suite, before the web application
exists, prevents the usage of the ATDD paradigm in a real
context [8]. Usually, developers wishing to apply ATDD must
manually write complex executable test scripts [2]. This task is
cumbersome due to the tight coupling between test scripts and
web applications. In fact, in order to work, test scripts must be
able to locate user interface elements (i.e. web elements) at run-
time by using specific hooks (for example identifiers contained
in web elements) and interact with them. Unfortunately, without
having the web application it is difficult to foresee such hooks.

In order to simplify the adoption of the ATDD paradigm
in the web context, we propose a general lightweight semi-
automatic approach that, starting from textual requirements
and screen mockups, is able to generate executable functional
web test scripts (i.e. black box tests able to validate a web
application by testing its functionalities), which in turn drive
the development of a web application. Once created the web
application through ATDD, the test scripts are refactored
removing potential reasons of fragility (e.g. hooks that are
likely to break during the web application evolution), clones,
and extended by means of input generator tools to form a robust
regression test suite. This will help developers to produce high
quality web applications.

This paper extends and refines our previous poster paper [4],
where we briefly sketched for the first time the idea. This
paper is organized as follows: Section II describes our general
approach for acceptance test driven development of web
applications. Section III instantiates the approach with a set
of selected open source tools, and reports some observations,
limitations and lesson learnt resulting from its usage to develop
the AddressBook web application. Finally, Section IV presents
the related works, followed by conclusions and future work in
Section V.

II. THE APPROACH

In this section, we describe in detail the tasks composing the
proposed approach, from those, shown in Figure 1, supporting
the development of the web application, to the ones, shown
in Figure 2, concerning the development of the regression test
suite used during the evolution of the target web application.

3http://www.seleniumhq.org/projects/ide/

Fig. 1. From the Requirements Analysis to the Web Application Development

Requirements Analysis
Eliciting requirements

Analysing requirements
Specifying requirements

Mockups Development
Developing HTML Mockups with a WYSIWYG

tool and make them “executable”

Acceptance Test Suite Development
Developing Test Scripts by interacting with the

HTML Mockups using a C&R tool

Screen Mockups Acceptance
Test Suite

Run Test Suite Run Test Suite

Web Application
Development

Develop / Refine Web
Application

Develop / Refine Web
Application

YES: problem in
Implementation

NO

OR

YES: problem in Requirements

YES: problem in Mockups YES: problem in Test Suite

User Stories

Requirements
Specification

Stakeholders
Approve

Use Cases

END

YES

START

NO Test Suite
Fails?

Web Application

A. Requirements Analysis
Requirements analysis aims at producing the requirements

specification for the web application under development. It
includes the following subtasks: (1) eliciting the require-
ments from future users, customers and other stakeholders,
(2) analysing the requirements to understand whether they
are complete, consistent, and unambiguous, (3) specifying
requirements as use cases or user stories depending on whether,
respectively, a more prescriptive or more agile development
approach is adopted.

B. Mockups Development
Mockups development aims at creating a set of screen

mockups used for prototyping the user interface of the web
application to develop [7], [17]. In order to reduce as much as
possible the need of manual intervention required to run the
automated acceptance test scripts on the web application under
development, the mockups have to represent quite accurately
– from a functional point of view – the interfaces of the web
application (i.e. all the web elements of the web pages to
interact with must be shown in the mockups, while the layout

Fig. 2. Regression Test Suite Development

Acceptance
Test Suite

Test Suite Extension
Fuzz Testing, Input Generation

Regression
Test Suite

Test Suite Maintainability
Improvement

Remove Clones => Restructuring Test Code

Acceptance
Test Suite’

Test Suite Enhancement

Robustness Improvement
Use Robust Locators

Robustness Improvement
Use Robust Locators

and the styles can be just sketched). Since our goal is to use a
capture/replay tool able to generate test scripts on previously
created screen mockups of the web application to develop, a
WYSIWYG content editor that creates HTML pages represents
the best choice to quickly develop them. The WYSIWYG
content editor could be also used to specify the properties of
the web locators (i.e. hooks that point to the web elements to
interact with). Locators can use many different properties;
the most reliable ones are identifiers, linkText, and name
values [14].

C. Acceptance Test Suite Development

Once the mockups are available, it is possible to record
the test suite by interacting with them. To make this task
easier and to simulate screen mockups navigability, we suggest
to implement: (1) the links among the mockups and (2) the
submission buttons. Concerning submission buttons, it is
possible to hard-code the alternative links to different target
mockups using JavaScript; for instance, when dealing with a
login form we can reach two mockups, “homePage.html” and
“wrongPage.html”, depending on the inserted values. In this
way, it is possible to record the test suite as if it were a real
web application. Developing the screen mockups and defining
the links among them allows also to produce a preliminary
but “working” prototype of the web application that can be
shown to the stakeholders. This is very useful for detecting,
as soon as possible, problems and misunderstandings in the
requirements [21]. More in detail, to record the test suite it is
necessary to:

1) open with the browser the first HTML mockup of a use
case/user story and activate the recording functionality
of the selected capture/replay tool;

2) follow the steps described in the use case/user story4 and
replicate them on the HTML mockups (e.g. insert values
in the input fields, click links);

3) manually insert the assertions in the generated test scripts.

The order of execution of the test scripts must be defined to:

1) allow the execution of the entire test suite (e.g. “Delete
User Test” must be executed after “Add User Test”);

2) test each functionality with the corresponding test scripts
(e.g. the login functionality must be validated using the
“Login Test” and thus such script must be executed before
all the other ones requiring a correct user authentication).

D. Web Application Development

Web application development is based on a test-first approach
using the previously produced test scripts. The functionalities
are implemented/refined following the test suite as a guidance
until all tests pass successfully. Finally, stakeholders evaluate
the resulting web application and decide whether approving it

4notice that in the process displayed in Figure 1 all the artifacts preceding an
activity in the flow are available to such activity (e.g. requirements specification
and screen mockups are used by the Acceptance Test Suite Development
activity).

or moving through a further refinement step. It is important to
notice that the web application development can be conducted
with any technology – e.g. Ajax – and any development process
– e.g. traditional, model-driven (e.g. using WebRatio [1]) or by
means of mashups. The only constraint is to use the same text
(e.g. for linkText locators) or ID/name attribute values used in
the produced mockups. In this way, test scripts recorded on
the mockups can be executed also on the real web application
without any problem.

E. Test Suite Maintainability Improvement

Once the web application has been developed, our approach
moves forward to the test suite maintainability step. Test scripts
generated through the recording phase often present repeated
instructions (e.g. each time the user has to authenticate herself
in the system, recorded test scripts include the steps related
to the credentials insertion phase) resulting in code clones. A
good practice is removing code clones by means of refactoring
strategies able to encapsulate common test script steps in
reusable blocks. After this post-processing step, test scripts are
easier to understand and modify and, thus, more maintainable.
In this way, a change in a web application functionality
will only impact the reusable blocks instead of propagating
the change through the entire test suite. As an example, let
us consider the following change in the login page: “for
security reasons, provide the password twice instead of once”;
without a refactoring step, all the test scripts implementing
login functionality will need a repair. On the contrary, with a
refactoring step, only the reusable blocks will need it.

F. Test Suite Extension

To improve the effectiveness of the test suite and make
it more complete, an extension step is needed. Even though
test scripts generated as described before can be very useful
for developing a web application in ATDD mode, they are
not enough to be used for regression purposes because too
simple/limited in terms of code coverage and built using
hard-coded values (i.e. the ones recorded during the test
script development or contained in the screen mockups). To
extend a test suite, at least two categories of tools can be
adopted to generate input data5: inputs data generator tools
and fuzzers [3]. Inputs generator tools are used to generate
input data, often stored in files, useful to later populate test
scripts. On the contrary, fuzzers are tools able to automatically
inject semi-random data into a program (in our case, a web
application). Currently, our approach suggests to replace test
scripts containing hard-coded values with parametric test
scripts (a.k.a. Data-Driven test scripts) able to read previously
generated input files containing the input data automatically
generated by inputs generator tools. Fuzzers will be considered
as future work, as well as smarter input data generators which
are able to produce input for test cases covering a larger set
of scenarios.

5test data generation is the process of creating a set of data for testing the
adequacy of new or revised web applications

G. Robustness Improvement

Both during the test suite maintainability improvement and
extension phases, new interactions with the web page elements
can be added. For instance, new assertions can be included
to existing test scripts or additional test scripts can require
to interact with web elements not considered in the original
acceptance test suite (e.g. new values in tables or lists). In
these cases, new locators have to be generated. A good practice
is making locators robust as much as possible to reduce test
suite maintainability efforts. Indeed, if a locator is fragile (e.g.
an absolute XPath or an XPath navigating several levels in the
DOM), it will quite surely lead to a test script failure when
something changes in the structure of the corresponding web
page under test. The locators fragility problem can be limited
by replacing existing locators with the ones produced by robust
locators generator algorithms (e.g. ROBULA+ [14]). Locators
robustness improvement can be performed during both the
maintainability improvement and extension phases, as shown
in Figure 2.

III. THE ADDRESSBOOK CASE STUDY

We decided to evaluate the feasibility of our approach by re-
implementing an existing web application. We chose the latest
version of AddressBook6, an addresses/phones/birthdays orga-
nizer web application already used in several other studies [23],
[6], [24], [13], [12], [10]. To make the evaluation more realistic,
we decided to apply the approach depicted in Figure 1 sepa-
rating the roles: while one of the authors was assigned to the
requirements analysis phase, another one was involved in the
subsequent phases. For the interested reader, all the produced
material (requirements specification, mockups, Selenium IDE
ATDD test suite, developed AddressBook prototype, etc.) can
be downloaded from http://sepl.dibris.unige.it/2016-ATDD.php

As described in Figure 1, the first step is specifying the
requirements for the web application to develop. Thus, for
the AddressBook web application, the author responsible for
requirements analysis performed an exploratory navigation to
reverse engineer its most relevant features, that finally were
described by means of a requirements specification composed
by 15 use cases. The author playing the role of analyst adopted
the method described by Reggio et al. [19].

In such method, use cases are enriched by a glossary of terms
to reduce ambiguity and by screen mockups to better explain
what an actor can see before/after each step in a scenario. Use
cases follow a quite stringent template, and must adhere to a
set of constraints for the whole artifacts of the specification (i.e.
use cases description, glossary, screen mockups) to improve
their consistency. This method was chosen since it helps in
better describing scenarios and making performed interactions
more explicit and clearer.

Moving forward with the process, the second author selected
BlueGriffon7 tool as the WYSIWYG content editor to design
the AddressBook screen mockups, since it presents a simple

6https://sourceforge.net/projects/php-addressbook/
7http://www.bluegriffon.org/

interface and provides HTML pages to be later used to record
test scripts. For each screen mockup to represent, only a subset
of the original web elements was reproduced, filtering out those
that were not interesting, not useful or not clear (e.g. the web
application at hand presents many links that perform similar
tasks). Reusable web elements have been identified and shared
in every screen mockup (e.g. a common link).

Screen mockups were created by following the order
suggested by use cases scenarios, together with some guidelines
from the adopted method [19] which helped in the process. In
our case, the login page mockup was the first one, followed by
the home page mockup and so on, in accordance with the use
cases functionalities previously captured. Figure 3 shows a full
example, where four generated screen mockups are linked to a
use case. The screen mockups were linked to use cases steps
any time the system had to show/ask something to the user (e.g.
a message or an empty form) or (s)he had to provide some
data (e.g. filling a previously shown empty form). The use case
given in Figure 3 depicts the screen mockups as hyperlinks to
the actual HTML representations produced with BlueGriffon;
for example, the AddEntryPage hyperlink after step two is
a reference to the screen mockup pointed by the arrow. As
suggested by the method proposed by Reggio et al. [19], a
glossary of terms was introduced to reduce their ambiguity; the
terms followed by the star symbol in Figure 3 are references to
entries in the glossary. For the sake of brevity, just a fragment
of the glossary has been shown in the figure.

As suggested by the approach, links among screen mockups
were implemented and, when necessary, manually injected with
Javascript code to handle input alternatives (e.g. correct/wrong
credentials) in order to make them executable. Automatic
Javascript injection is part of our future work; currently, we are
planning to develop a tool that automatically derives Javascript
code from form-based screen mockups and inject them with
alternatives checking.

Overall, 35 screen mockups were produced, 18 of them
uniquely representing the main sections of the application
and the remaining ones derived from the former. Since screen
mockups are static, the derived ones were necessary to simulate
the behavioural aspect of the web application to develop (i.e. its
states). For example, the home page should list all the entries
in the system; therefore a new screen mockup to represent it
has been created any time data were added, removed or edited.

In order to guarantee a correct link between generated test
scripts and future web application, the author in charge of
development assigned IDs or names to the web elements con-
tained in the HTML screen mockups: 1) on which interactions
will occur (e.g. a text field that will be filled) and 2) that will
be involved in assertions on data containers (e.g. a label that
will show an output message consequent to some user actions).

For the test suite development, the second author selected
Selenium IDE, a Firefox plug-in that allows to record, edit, and
execute web test scripts. Selenium IDE was chosen among the
others capture/replay tools since it is largely used [11], it has a
simple interface, and offers a large variety of useful extensions.
Adopting a capture-replay DOM-based tool like Selenium IDE

Fig. 3. The use case for adding a new entry, adorned with screen mockups and a fragment of the glossary

Use Case: Add Entry

Actor: User

Preconditions: LoggedUser* is true

Postconditions: An entry characterized by

 EntryInfo* is added to EntriesList*

Main Success Scenario:

 HomePage

 1. The User requests to add a new entry

2. AddressBook asks the User for EntryInfo*

 AddEntryPage

3. The User enters EntryInfo* and confirms

 AddEntryFilledPage

4. AddressBook informs the User that the new entry has been added.

 EntryAddedPage

Glossary (fragment)

Data Entry:

 - EntryInfo: all the characterizing info for an entry: Firstname, Middlename, Lastname, Nickname, Title, Company, Address,
 Phones*, Email*, Birthday*, AssignedGroup*

 ….
System State:

 - LoggedUser: true if the User is logged into AddressBook, false otherwise

 - EntriesList: the list of entries into AddressBook, each one characterized by EntryInfo*

 ….

allows to pay little attention to the mockups graphical aspect
and focus on the user interaction, with clear advantages in terms
of effort required for creating the test scripts [9]; for this reason
we avoided both visual or programmable [11] web testing tools,
such as Sikuli8 or Selenium WebDriver9 respectively.

8http://www.sikuli.org/
9http://www.seleniumhq.org/projects/webdriver/

The adoption of both use cases and screen mockups allowed
the second author to record test scripts during the process, since
interactions naturally followed the use cases scenarios. More-
over, screen mockups enriched the comprehension of which
interactions and data were needed. For example, AddEntryPage
and AddEntryFilledPage hyperlinks from Figure 3 refer to
screen mockups that represent a form-based web page, before

Fig. 4. The test script for adding a new entry

and after filling it with data, so they suggest which input the
tester may use to fill the textfields.

Each test script was generated starting from use cases
scenarios. Initially, the second author had to open the first
screen mockup of each use case, according to the listed pre
conditions. For instance, if a pre condition states that a list of
entries is shown, then the test script should start from the screen
mockup where that list is actually displayed. Then, the recorded
interactions on the web elements followed the scenarios steps,
while assertions were manually added, guided by the post
conditions described in the use cases. As an example, if a post
condition states that an entry is added to a list, then that entry
should be visible in the list and the system should inform about
the completion of the operation (to be checked by means of
an assertion).

The final acceptance test suite was made up of 17 simple test
scripts. A sample one, expressed in the Selenese10 language,
is shown in Figure 4. Here the test script performs some

10each Selenese line is a triple: (command, target, value)

interactions (see the column Command in the Selenium IDE
interface shown in Figure 4) on the web elements, which are
identified by their locators (Target column), providing some
input data (Value column). In the example, the test script clicks
on the link identified by the “add new entry” textual locator
(more in detail the text of a link) to access the page where the
entry can be added. Then, it performs some interactions on
form fields (i.e. textfields and drop down menu), to enter/select
input data for the new entry; the web elements are located by
the name property. Finally, it confirms the insertion by clicking
on the “Add” link. The assertion is manually added and checks
whether the confirmation message is shown in a label located
by a specific id.

The previously generated screen mockups representing
unique aspects of AddressBook (18 out of 35) were adopted
to re-develop the web application (17 mockups were excluded
from the process because they were just mere instantiations,
i.e. replications with different data). According to the ATDD
paradigm, development was guided by test scripts, step by step.

Fig. 5. The Javascript rollup rule for adding a new entry

var manager = new RollupManager();

manager.addRollupRule({

 name: 'add_entry',

 description: 'add a new entry',

 args: [],

 commandMatchers: [],

 getExpandedCommands: function(args) {

 var commands = [];

 commands.push({

 command:'clickAndWait', target:'link=add new entry'

 });

 commands.push({

 command:'type', target:'name=firstname', value: ${firstname}

 });

 commands.push({

 command:'type', target:'name=lastname', value: ${lastname}

 });

 commands.push({

 command:'type', target:'name=nickname', value: ${nickname}

 });

 commands.push({

 command:'type', target:'name=title', value: ${title}

 });

 commands.push({

 command:'type', target:'name=company', value: ${company}

 });

 commands.push({

 command:'type', target:'name=address', value: ${address}

 });

 commands.push({

 command:'type', target:'name=homephone', value: ${homephone}

 });

 commands.push({

 command:'type', target:'name=mobilephone', value: ${mobilephone}

 });

 commands.push({

 command:'type', target:'name=email', value: ${email}

 });

 commands.push({

 command:'select', target:'name=day', value: ${day}

 });

 commands.push({

 command:'select', target:'name=month', value: ${month}

 });

 commands.push({

 command:'type', target:'name=year', value: ${year}

 });

 commands.push({

 command:'clickAndWait', target:'link=Add'

 });

 commands.push({

 command:'verifyText', target:'id=okMsg', value:

 });

 return commands;

 }

});

As expected, they failed at the first run so, in order to pass
the tests and fulfil the expected features, the author in charge
for the development had to implement AddressBook dynamic
behaviours (mostly through PHP code to handle with actual
data and navigation). The test scripts failures were easy to
detect and fix since Selenium IDE provides quite explicative
messages. Following the process, he had to switch back to
mockups and test suite development just a couple of times,
due to minor changes in the GUI or in interactions.

At the end, the recorded test suite led successfully to a
preliminary but working AddressBook web application. Notice

Fig. 6. The structure of the XML data file for adding a new entry

<testdata>

 <vars firstname = "..."

lastname = "..."

nickname = "..."

title = "..."

company = "..."

address = "..."

homephone = "..."

mobilephone = "..."

email = "..."

day = "..."

month = "..."

year = "..."

/>

</testdata>

that no changes to the web elements were needed, since the
same IDs/names of the screen mockups were preserved. From
this point, layout could be improved by adding CSS to enrich
the GUI of the web application, with no impact on test scripts.

The second author then proceeded to enhance the test suite,
as shown in Figure 2. To factorize test scripts, he used the
Selenium IDE rollup command to group repeated sequences
(i.e. clones) of Selenese instructions and reuse them across
different test scripts in the test suite. The rollup command
refers to a Javascript file that stores the shared Selenese triples
(i.e. command, target, value) as a set of rules to be called any
time they must be executed. In Figure 5 a Javascript rollup
rule is shown. It includes all the interactions with the web
application needed to add a new entry (i.e. clicking the link
to visit the page where the form is located, inserting the data
into the form, and confirming it, as shown also in test script
of Figure 4). Thus, this rule can be referred inside Selenium
test scripts through the specified property name. In this way,
interactions upon highly used web elements, such as text fields
inside a login form, are contained in the file, therefore any
change that may influence those elements will impact just
the rule, and eventually test scripts become more robust and
readable (e.g. as shown in Figure 7, the single rollup add_entry
instruction replaces those listed in Figure 4).

We believe that the adoption of rollup rules can provide
substantial advantages for what concerns the effort of main-
taining the test suites. For instance, Leotta et al. [11] show
the benefits of adopting the Page Object pattern11, a quite
popular web test design pattern, which aims at improving the
test case maintainability and at reducing the duplication of
code. A page object is a class that represents the web page
elements and that encapsulates the features of the web page
into methods. With the page object pattern, each method can
be reused more times in a test suite. Thus, a change at the
level of the page object can repair more than one test case at
once. We believe that, from the maintainability point of view,
having rollup rules or page object methods is quite similar.

11http://martinfowler.com/bliki/PageObject.html

In total, 14 rollup rules have been defined, saving 51 LOCs
due to repeated instructions. Clearly, the benefits from using
rollup rules depend mostly on the test suite size and on the
number of times a block of instructions is reused among the
test scripts (e.g. adding a new user). This becomes particularly
evident in the next phase (Test Suite Extension), where the
test scripts are re-executed several times with different data.

Since generated acceptance test scripts contained hard-coded
input data by construction (see Figure 4), the second author
transformed them in parametric test scripts, relying on XML
datasets created by the GenerateData12 input generator, and
executed them with Sel Blocks13, a Selenium IDE extension
able to execute parametric test scripts. Even though the
generated data were unable to cover all possible scenarios
which may originate from feeding a form with input data,
it was enough to drastically augment the test suite produced
in the previous phase of the approach. We chose to keep
also the old hard-code based test scripts since they were still
useful for testing purposes (the meaningful data recorded are
able to cover, at least once, each existing scenario). To make
multiple data understandable by Sel Block, just few changes
in their XML structure were needed; in Figure 6 the accepted
test data template is shown, where the vars tag represents a
random instance with its attributes. Furthermore, test scripts
were enriched by additional instructions, such as loops that
cycle across the XML entries or parameterized commands
that take in consideration the multiplicity of the given data
(e.g. clicking on the right edit link associated to the currently
selected user). Consequently, parameterized assertions were
manually introduced as well. At the end, the test suite which
was originally made up of 17 hard-coded test scripts have
been augmented to 487 executable test scripts, since some of
the original ones were parameterized with several different
input/expected values previously stored in XML datasets. In
Figure 7, the enhanced version of the test script shown in
Figure 4 is given. The test script is now evidently shorter,
since all the instructions to add a new entry in the system
are enclosed in the rollup command (Figure 5), while the
forXml and endForXml commands are used to iterate across
the provided XML file.

Finally, the second author applied the ROBULA+ algo-
rithm [14] to generate robust locators for the new web elements
used in the additional test scripts and for the further assertions
added to the existing ones, in all cases in which Selenium IDE
relied on fragile navigational XPath locators. In this way, it was
possible to improve test scripts robustness by means of more
robust XPath locators (e.g. this is particularly useful in case of
dynamic DOM structures, such as tables, containing changing
data that cannot be easily provided of meaningful attributes).
The locators generated by ROBULA+ are, in general, by far
more robust than the ones produced by Selenium IDE (63%
fragility reduction) [14].

12http://www.generatedata.com
13https://addons.mozilla.org/it/firefox/addon/selenium-ide-sel-blocks/

A. Limitations and Future Improvements

First, we found the approach feasible and simple to apply
for small and medium sized web applications, but probably the
same process would be quite costly for big web applications.
In such cases, we believe, it may lead to a high number of
screen mockups, and so to a relevant effort from the mockups
designers point of view. Moreover, to limit the number of screen
mockups to be produced, interactions upon web elements must
be reduced as well. Unfortunately, this has the consequence to
limit the number of functionalities tested and the coverage
of the test scripts produced. Second, to benefit from the
approach and keep test scripts runnable, mockups designers
must preventively associate robust hooks, such as for instance
meaningful IDs or names, to web elements (even to labels that
may potentially express some useful data to assert). This can be
a cumbersome task. Third, reproducing the navigation among
mockups and injecting Javascript code to simulate dynamic
behaviours can also be a tedious and time-consuming task, if
manually performed. Moreover, test suite enhancement requires
additional Javascript code to introduce rollup rules, while the
generated random data needs some improvements to affect
more scenarios and provide smarter datasets. Techniques to
automatically generate assertions are also an important topic to
investigate. For this reasons, in the future we intend to provide
a tool that combines the phases of development (Figure 1) with
the ones of test suite improvement and extension (Figure 2)
and automates all the steps of the proposed approach.

B. Lesson Learnt

The adoption of the proposed approach to the development
of the AddressBook application resulted in some lesson learnt:

• the main lesson we learnt is that the proposed approach
is applicable to the development of medium-size web
applications with a limited effort. We indeed believe that
the process is generalizable also for other web applications
of similar complexity.

• we have experimented how requirements expressed by
means of use cases and screen mockups [19] are helpful to
guide test suite development, since their scenarios naturally
describe user interactions more than concise user stories
may do. Extensions in use cases clearly suggest what
must be tested and which scenarios should be considered.
Pre and post conditions allow to determine, respectively:
(1) the starting point from which to record a test script,
and (2) the conditions/properties that must be checked by
a test script.

• the practice of adding meaningful hooks to web elements
turns out to be useful, since it guarantees to have robust
locators during software evolution and maintenance, even
more when an algorithm like ROBULA+ is subsequently
applied. This algorithm showed its utility in formulating
complex assertions based on XPath locators involving
nested elements (e.g. as in the case of an entry in a table).

• the adoption of an input generator tool (and of the
Selenium IDE extensions) can make test suite enhance-

Fig. 7. The enhanced test script for adding a new entry

ment easier and more effective, since tester can simply
record interactions from mockups and then improve
their complexity with loops, covering a larger variety
of interesting input combinations through multiple runs
on randomly generated data.

• it is not a problem to pay a little more effort in screen
mockups creation, given that they can be then reused as
the basis for the development of the web application GUI.

IV. RELATED WORKS

Hellmann et al. [8] present a Test Driven Development
approach for GUI-based applications, where low fidelity
prototypes are sketched and linked together through event
handlers to make the navigation possible. In a second time,
interactions on prototypes are recorded to produce test scripts
able to drive the development. While the idea is similar
to the one proposed in our paper, some differences exist:
context, adopted technologies, requirements analysis phase
and emphasis on test scripts robustness.

Olek et al. [18] propose a coding language (Test Description
Language) for defining test scripts following use cases steps,
by recording interactions on low detailed sketches. Similar
to us, use cases are used as a starting point for test scripts
definition. While our approach is tool independent and can be
instantiated by practitioners in several ways, in the approach
proposed by Olek et al. the aid of specific tools is essential and
manual intervention is required to code complex interactions
and to translate test descriptions into executable scripts.

In the context of Model-Driven Web Engineering (MDWE),
Rivero et al. [22] propose an iterative agile-MDWE process
based on mockups to support web applications development.
HTML mockups are generated from user stories, tagged to
explicit widgets semantic and turned into MDWE models to
generate code. The main difference with respect to our work
is that the work of Rivero et al. is not based on the ATDD
paradigm. In their paper, user stories are the basis to design
screen mockups, although they do not support the testing phase.

Mugridge [16] developed an extension to the Fit frame-
work14 to improve expressiveness of story tests (i.e. fixtures
workflows based on user stories), automatically coding them
into executable test scripts. Similarly to us, user stories can
guide test scripts definition and execution. However, the paper
does not focus on web domain and testing evolution. Test
scripts need fixtures tables and an actual system to run, while
in our approach they can be recorded and executed directly on
screen mockups.

Besson et al. [2] propose an ATDD approach for web
applications development based on user stories. Functionalities
are mapped into a graph, where each path represents a testing
scenario as a navigation through pages. Testing scenarios
are then validated by the customer and subsequently (semi-
automatically) transformed into executable test scripts. Con-
versely to Besson et al., our approach does not require the graph
structure, which is substituted by a simpler recording phase
of interactions on screen mockups. Therefore, test scripts are
easier to get and to maintain during web application evolution.

14http://fit.c2.com/

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel approach for
developing web applications following the ATDD paradigm.
The novelty concerns the usage of screen mockups and
capture/replay testing tools for easily generating acceptance
test scripts guided by requirements specifications and able to
drive the development of the target web application.

The approach has been successfully applied on a sample
application to show its feasibility. The main lesson learnt is
that the proposed approach is applicable to the development
of medium-size web applications with a limited effort. The
obtained encouraging results on the selected sample application
suggest that more comprehensive studies (comparative exper-
iments, case studies, and evaluation of the actual industrial
applicability) should be conducted to gather feedbacks on the
effectiveness and usefulness of our approach.

As future work, we want to continue this line of research,
overcoming the approach limitations and building a full-fledged
tool able of implementing the steps composing the proposed
approach.

REFERENCES

[1] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti. Model-driven devel-
opment based on OMG’s IFML with WebRatio web and mobile platform.
In P. Cimiano, F. Frasincar, G.-J. Houben, and D. Schwabe, editors,
Proceedings of 15th International Conference on Web Engineering (ICWE
2015), volume 9114 of LNCS, pages 605–608. Springer, 2015.

[2] F. M. Besson, D. M. Beder, and M. L. Chaim. An automated approach
for acceptance web test case modeling and executing. In Proceedings
of 11th International Conference on Agile Software Development (XP
2010), volume 48 of LNBIP, pages 160–165. Springer, 2010.

[3] D. L. Bird and C. U. Munoz. Automatic generation of random self-
checking test cases. IBM Systems Journal, 22(3):229–245, 1983.

[4] D. Clerissi, M. Leotta, G. Reggio, and F. Ricca. A lightweight
semi-automated acceptance test-driven development approach for web
applications. In A. Bozzon, P. Cudré-Mauroux, and C. Pautasso, editors,
Proceedings of 16th International Conference on Web Engineering (ICWE
2016), volume 9671 of Lecture Notes in Computer Science, pages 593–
597. Springer, 2016.

[5] G. Downs. Lean-agile acceptance test-driven development: Better
software through collaboration by Ken Pugh. ACM SIGSOFT Software
Engineering Notes, 36(4):34–34, 2011.

[6] M. Hammoudi, G. Rothermel, and P. Tonella. Why do record/replay tests
of web applications break? In Proceedings of 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST 2016),
page (in press). IEEE, 2016.

[7] H. R. Hartson and E. C. Smith. Rapid prototyping in human-computer
interface development. Interacting with Computers, 3(1):51–91, 1991.

[8] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer. Test-driven devel-
opment of graphical user interfaces: A pilot evaluation. In Proceedings
of 12th International Conference on Agile Software Development (XP
2011), pages 223–237, 2011.

[9] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Proceedings of 20th Working Conference on Reverse
Engineering (WCRE 2013), pages 272–281. IEEE, 2013.

[10] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-
based web locators: An empirical study. In M. W. Sven Casteleyn,
Gustavo Rossi, editor, Proceedings of 14th International Conference
on Web Engineering (ICWE 2014), volume 8541 of Lecture Notes in
Computer Science, pages 322–340. Springer, 2014.

[11] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Approaches and tools for
automated end-to-end web testing. Advances in Computers, 101:193–237,
2016.

[12] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Automated generation
of visual web tests from DOM-based web tests. In Proceedings of 30th
ACM/SIGAPP Symposium on Applied Computing (SAC 2015), pages
775–782. ACM, 2015.

[13] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to
increase the robustness of web test cases. In Proceedings of 8th IEEE
International Conference on Software Testing, Verification and Validation
(ICST 2015), pages 1–10. IEEE, 2015.

[14] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+: An algorithm
for generating robust XPath locators for web testing. Journal of Software:
Evolution and Process, 28(3):177–204, 2016.

[15] A. McDonald and R. Welland. Agile web engineering (AWE) process.
Technical report, University of Glasgow, 2001.

[16] R. Mugridge. Managing agile project requirements with storytest-driven
development. IEEE Software, 25(1):68–75, 2008.

[17] M. O’Docherty. Object-Oriented Analysis and Design: Understanding
System Development with UML 2.0. Wiley, 1 edition, June 2005.

[18] L. Olek, B. Alchimowicz, and J. R. Nawrocki. Acceptance testing of web
applications with test description language. Computer Science (AGH),
15(4):459, 2014.

[19] G. Reggio, M. Leotta, and F. Ricca. A method for requirements capture
and specification based on disciplined use cases and screen mockups.
In Proceedings of 16th International Conference on Product-Focused
Software Process Improvement (PROFES 2015), volume 9459 of Lecture
Notes in Computer Science, pages 105–113. Springer, 2015.

[20] G. Reggio, F. Ricca, and M. Leotta. Improving the quality and the
comprehension of requirements: Disciplined use cases and mockups. In
Proceedings of 40th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2014), pages 262–266. IEEE, 2014.

[21] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano.
Assessing the effect of screen mockups on the comprehension of
functional requirements. ACM Transactions on Software Engineering
and Methodology, 24(1):1–38, 2014.

[22] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, F. M. Simarro, and
M. Gaedke. Mockup-driven development: Providing agile support for
model-driven web engineering. Information & Software Technology,
56(6):670–687, 2014.

[23] K. P. Shabnam Mirshokraie, Ali Mesbah. Atrina: Inferring unit oracles
from GUI test cases. In Proceedings of 8th IEEE International Conference
on Software Testing, Verification and Validation (ICST 2016), page (in
press). IEEE, 2016.

[24] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Clustering-aided page
object generation for web testing. In A. Bozzon, P. Cudré-Mauroux,
and C. Pautasso, editors, Proceedings of 16th International Conference
on Web Engineering (ICWE 2016), volume 9671 of Lecture Notes in
Computer Science, pages 132–151. Springer, 2016.

