

Copyright:

© 2016 Springer International Publishing Switzerland

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-38791-8_8

Clustering-Aided Page Object Generation for Web Testing

Andrea Stocco, Maurizio Leotta, Filippo Ricca, Paolo Tonella

Abstract:

To decouple test code from web page details, web testers adopt the Page Object design

pattern. Page objects are facade classes abstracting the internals of web pages (e.g., form

fields) into high-level business functions that can be invoked by test cases (e.g., user

authentication). However, writing such page objects requires substantial effort, which is paid

off only later, during software evolution. In this paper we propose a clustering-based

approach for the identification of meaningful abstractions that are automatically turned into

Java page objects. Our clustering approach to page object identification has been integrated

into our tool for automated page object generation, APOGEN. Experimental results indicate

that the clustering approach provides clusters of web pages close to those manually produced

by a human (with, on average, only three differences per web application). 75% of the code

generated by APOGEN can be used as-is by web testers, breaking down the manual effort for

page object creation. Moreover, a large portion (84%) of the page object methods created

automatically to support assertion definition corresponds to useful behavioural abstractions.

Digital Object Identifier (DOI):

http://dx.doi.org/10.1007/978-3-319-38791-8_8

Clustering-Aided Page Object Generation for Web
Testing

Andrea Stocco1, Maurizio Leotta1, Filippo Ricca1, Paolo Tonella2

1 DIBRIS – Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

andrea.stocco@dibris.unige.it, maurizio.leotta@unige.it,
filippo.ricca@unige.it, tonella@fbk.eu

Abstract. To decouple test code from web page details, web testers adopt the
Page Object design pattern. Page objects are facade classes abstracting the inter-
nals of web pages (e.g., form fields) into high-level business functions that can
be invoked by test cases (e.g., user authentication). However, writing such page
objects requires substantial effort, which is paid off only later, during software
evolution. In this paper we propose a clustering-based approach for the identi-
fication of meaningful abstractions that are automatically turned into Java page
objects. Our clustering approach to page object identification has been integrated
into our tool for automated page object generation, APOGEN. Experimental re-
sults indicate that the clustering approach provides clusters of web pages close
to those manually produced by a human (with, on average, only three differences
per web application). 75% of the code generated by APOGEN can be used as-is
by web testers, breaking down the manual effort for page object creation. More-
over, a large portion (84%) of the page object methods created automatically to
support assertion definition corresponds to useful behavioural abstractions.

1 Introduction

Web applications are among the most challenging software systems to test [27]. On
one side, developing web applications is becoming easier thanks to recent frameworks
(e.g., AngularJS3), which hide the complexity behind an expressive and readable web
programming environment, and allow even newbie programmers to quickly develop
highly interactive and complex applications. On the other hand, this comes at a price,
because the programmers’ inexperience with error-prone languages like Javascript, and
the combination of new technologies may introduce new kinds of faults, which have
unpredictable effects and are hard to detect [18].

End-to-end (E2E) test automation is commonly adopted in such context, often jus-
tified by continuous integration and test driven approaches. Test scripts simulate typ-
ical end-users’ interactions by delivering mouse clicks and keystrokes to the browser
at a pace that would be likely infeasible to perform manually. The GUI responses are
recorded and validated through assertions to check the web application for functional
correctness.

3 https://angularjs.org/

A disadvantage of test automation is the poor maintainability of the test code through-
out the development process. In fact, test scripts are often highly customised and cou-
pled with the technical details of the underlying web pages, which make them quite
difficult to read and maintain when features are added or altered in the web applica-
tion under test. Web testers try to prevent these issues by using the Page Object design
pattern, which provides a simplified interface towards the web application. All the tech-
nicalities the test scripts refer to, such as low-level operations or web elements locators
(e.g., an XPath to select an input field [14]), are moved to the page objects. The test
code is thus separated from the implementation details, because test scripts interface
with page objects methods, rather than directly with web page elements.

Building page objects for web applications is an activity which is performed manu-
ally [25]. Our prototype tool APOGEN [24] is the first solution able to provide a consid-
erable degree of automation, hence reducing the effort for the creation of page objects.
However, the initial version of APOGEN [25] suffered two major limitations: (1) in the
presence of highly dynamic web pages, it creates a huge number of page objects that
should be conceptually regarded as a single page object; (2) it does not support the
creation of getter methods in any way. A getter method retrieves textual portions of a
web page that can be used to verify the behaviour of the web application (e.g., with
assertions) through the results displayed to the user.

In this paper, we overcome such limitations with the following novel contributions,
implemented in the new version of the tool APOGEN:

• the automatic detection of cloned and semantically similar web pages, based on clus-
tering, to be associated with the same page object;
• the Cluster Visual Editor (CVE), a web-based interactive cluster visualiser and editor,

allowing the tester to inspect and modify the clustering results;
• the automatic creation of page object getter methods, capable of detecting and re-

porting Document Object Model (DOM) differences observed between web pages
within the same cluster.

We have applied APOGEN to six web applications and we have studied how different
clustering algorithms, working on different syntactic features (e.g., DOM), are able to
group similar web pages that should be conceptually mapped onto a single page object.
Our results indicate that: (1) hierarchical clustering provides clusters of web pages close
to those manually produced by a human, (2) 75% of the code generated by APOGEN
can be used as-is by the tester, reducing the manual effort for page object creation and
(3) 84% of the automatically generated getter methods correspond to methods the tester
needs when creating test case assertions.

The paper is organised as follows: Section 2 provides some background on the Page
Object design pattern, our original tool APOGEN, and the challenges in the automatic
creation of page objects for web applications. Section 3 describes the clustering-aided
version of APOGEN and the features we evaluated in our experiment. Section 4 presents
the quantitative and qualitative results of the experiment we conducted to evaluate the
effectiveness of our approach. Section 5 describes the related work, while conclusions
and future work are drawn in Section 6.

Motorola XOOM™ with Wi-Fi
Motorola XOOM has a super-powerful dual-core
processor and Android 5.0 (KitKat). With its Wi-Fi
connection, you’ll enjoy streaming videos

RAM ROM Wi-Fi CPU Screen
1GB 8GB Yes 1GHz Dual Core (1200x800)

Motorola XOOM™
Motorola XOOM has a super-powerful dual-core
processor and Android 5.0 (KitKat). With its HD
screen, you’ll enjoy high-quality videos

RAM ROM Wi-Fi CPU
1GB 8GB No 1GHz Dual Core

Getter

public class Index {
// Web Element
@FindBy(id=“search”)
private WebElement search;
@FindBy(name=“sort”)
private WebElement sortBy;
@FindBy(css=“Phones > a::nth:child(1)”)
private WebElement link_phone1;
@FindBy(css=“Phones > a::nth:child(2)”)
private WebElement link_phone2;
// Navigation
public PhonePage goToPhone1(){

link_phone1.click();
return new PhonePage();

}
public PhonePage goToPhone2(){

link_phone2.click();
return new PhonePage();

}
// Action
public void search(String s, String v){

search.sendKeys(s);
sortBy.selectByVisibleText(v);

}
}
public class PhonePage {

// Web Element
@FindBy(id=“ram”)
private WebElement ram;
@FindBy(name=“rom”)
private WebElement rom;
. . .
@FindBy(name=“screen”)
private WebElement screen;
// Getter
public String getRam(){

return ram.getText();
}
public String getRom(){

return rom.getText();
}
. . .
public String getScreen(){

return screen.getText();
}

}
(c)

Search:

Sort by:

Motorola XOOM™ with Wi-Fi

Motorola XOOM™

Action

Search

Sort

Link_Phone1

Link_Phone2

Search

Navigation

Phone1

Phone2

Web Element

Web Element

ROM

RAM

Screen

CPU

Wi-Fi

GetRAM

GetROM

GetScreen

GetWiFi

GetCPU
Screen

(1200x800)

Index Page

Phone Pages

Fig. 1. AngularJS Phonecat web application (left), with its abstract representation in terms of
Web Elements and Functionalities (Navigations, Actions, Getters) (center), and associated Java
page objects (right)

2 Background

In web development, E2E functional testing is a widely adopted practice thanks to the
increased popularity of powerful test automation tools, such as Selenium4. Automated
tests created with these tools operate by instructing a browser to click or type on page
elements. Whereas the biggest advantage is an accurate simulation of the user’s be-
haviour, one of the major drawbacks is that such tests tend to be fragile and highly
coupled with the web pages. To prevent this, testers use the Page Object design pattern.

A page object is a class that abstracts a web page hiding the technical details about
how the test code interacts with the underlying web page behind a more readable and
business-focused facade. This brings two main advantages: (i) tests are more readable,
and (ii) the page access logic is centralised in one place, making test suite maintenance
easier [9, 10].

Let us consider the running example in Fig. 1, based on the AngularJS Phonecat web
application5, one of the experimental objects considered in this work. On the top-left
part there is the home page, displaying a list of phones (we limited the figure to two),
whereas in the bottom-left part are shown the web pages obtained after clicking on the
links in the home page. In the central part there are the web page abstractions that the

4 http://www.seleniumhq.org/
5 https://github.com/angular/angular-phonecat/

1 public class TestAddOwnerWithoutPageObjects {
2 @Test
3 public void testAddOwner(){
4 WebDriver driver = new FirefoxDriver();
5 driver.get(“http://localhost:8080/phonecat/”);
6 driver.findElement(By.id(“sort”)).selectByVisibleText(“Newest”);
7 driver.findElement(By.id(“search”)).sendKeys(“Motorola”);
8 driver.findElement(By.css(“Phones > a::nth:child(1)”)).click();
9 AssertThat(driver.findElement(By.css(“#ram”)).getText(), is(“1 GB”));
10 AssertThat(driver.findElement(By.css(“#rom”)).getText(), is(“8 GB”));
11 AssertThat(driver.findElement(By.css(“#wifi”)).getText(), is(“Yes”));
12 driver.quit();

 } }

1 public class TestAddOwnerWithPageObjects {
2 @Test
3 public void testAddOwner(){
4 WebDriver driver = new FirefoxDriver();
5 driver.get(“http://localhost:8080/phonecat/”);
6 Index indexPage = new Index(driver);
7 indexPage.search(“Motorola”, “Newest”);
8 PhonePage phone1 = indexPage.goToPhone1();
9 AssertThat(phone1.getRam(), is(“1 GB”));
10 AssertThat(phone1.getRom(), is(“8 GB”));
11 AssertThat(phone1.getScreen(), is(“Yes”));
12 driver.quit();
 } }

Fig. 2. Two test cases created to test the Add Owner functionality of PETCLINIC. On the left is
the test code without the adoption of page objects, whereas on the right is the same test case,
using the automatic page objects generated by APOGEN

page objects should provide, showing the web elements test cases may interact with, and
the functionalities the two pages offer (action, navigation, and getter functionalities).
The right part shows the page object representations of such pages, written in Java. We
can notice how the two web pages displaying phone details for two phones (bottom-
center part) have exactly the same abstract representation: only their textual content
varies. Correspondingly, only one Java page object can represent both of them (class
PhonePage, bottom-right).

In Fig. 2 we can see an example of how page objects improve the readability of
the test cases by encapsulating functionalities. The test steps shown on the left (without
page objects) are directly coupled with the web page internals, while the steps on the
right (with page objects) map directly to human-readable, use case scenario’s steps (e.g.,
open the index page, go to the first phone page, etc).

2.1 First Steps in the Automatic Generation of Page Objects

Our tool APOGEN is the first effective prototype able to generate automatically a set of
page objects for a web application. APOGEN consists of three main modules: a Crawler,
a Static Analyser, and a Code Generator. The input is a web application, together with
the data (e.g., login credentials) required to navigate it. The output is a set of Java
files, representing a code abstraction of the web application, organised using the Page
Object and Page Factory6 design patterns, as supported by the Selenium WebDriver
framework.

The Crawler generates a state-based model (graph) of the web application, in which
nodes are dynamic states of the web pages and edges are event-based transitions be-
tween nodes. In particular, we use Crawljax [17], a state of the art open source Java tool
for automatically crawling highly-dynamic web applications. The Static Analyser of
APOGEN takes the Crawler outputs and for each dynamic state builds an abstract state
object-based representation. The graph and the DOMs are parsed to collect the nec-
essary information for building comprehensive and readable classes. The class name
is generated from the URL, whereas the web elements stimulated by the Crawler are
inserted as WebElement instances in the page object class. For each of them, a mean-
ingful variable name and a locator (XPath or CSS) are generated. For what concerns

6 https://code.google.com/p/selenium/wiki/PageFactory

the methods, each transition in the graph is turned into a navigational method between
pages, and every data-submitting form is parsed to acquire information about its web el-
ements and the associated functionality. The output of the Static Analyser is an abstract
representation of the web pages and their interactions. In the last step, the Code Gen-
erator transforms such model into a set of Java page objects, tailored for the Selenium
WebDriver framework.

2.2 Major Limitations

While experimenting with the initial version of APOGEN, we noticed two major issues
that limit its applicability [25]. The first issue depends on the default state abstraction of
the Crawler, which is affected by minor UI changes. Indeed, Crawljax was designed to
perform an extensive exploration and when it visits the same page filled with different
input data, it often creates different dynamic states, even though the page is conceptually
the same. We refer to these duplicate pages as “clones” (e.g., the two phone detail pages
of the running example of Fig. 1 bottom-left). As a direct consequence, when crawling
a non-trivial application, the size of the extracted model is often huge, with APOGEN
generating a high amount of page objects, some of which are conceptually clones of
each other. The second issue is the lack of assistance in the automatic creation of getter
methods, necessary when defining test case assertions.

3 Clustering-Aided Page Object Generation

In order to address the limitations discussed in Section 2.2, we applied clustering as a
post-processing technique (after the crawling phase) for a triple aim: (1) grouping pages
related to the same functionality, e.g., all the pages concerning user authentication;
(2) grouping clone pages, i.e., different versions of the same page, only differing by
minor, dynamic details, as the textual content (see, for instance, those in Fig. 1 bottom-
left); (3) exploiting the differences between clones to retrieve information useful for
getter methods.

We extended APOGEN with an additional module, the Clusterer, which runs a clus-
tering algorithm over the Crawler output. We opted for three popular clustering al-
gorithms from the literature: K-means++ [1], Hierarchical Agglomerative [7], and K-
medoids [6]. For the first two we used the implementations available from the popular
Java machine learning library WEKA [30], whereas K-medoids was not available, thus
we implemented it from scratch. The Clusterer is able to automatically calculate differ-
ent kinds of syntactic feature matrixes from the web pages (e.g., tag frequency), that are
then used by the clustering algorithms to compute the similarities.

Since there is no perfect clustering technique working for all web applications, the
result might be somehow imprecise and might need to be manually refined. To this aim,
APOGEN supports the tester with the Cluster Visual Editor (CVE), an interactive cluster
visualisation and editor facility, allowing testers to inspect and modify the clustering
results, as shown in Fig. 3.

APOGEN Cluster Visual Editor
Drag the states outside or inside the clusters to modify the configuration

Refresh Save

Fig. 3. Cluster Visual Editor (CVE), a web-based tool developed using the D3 library

3.1 Feature Extraction and Matrix Creation

Clustering algorithms rely on the concept of similarity between web pages. There exist a
number of works studying the factors affecting web page similarity [2, 23, 26], in which
authors observed that structural features are related with semantic properties of the
data and provide meaningful means of comparison between web pages. The Clusterer
considers the following features: Tag Frequency, Word Frequency, URL and Document
Object Model (DOM).
Tag Frequency (TF) measures the frequency at which tags occur in a web page. The
general intuition is that such frequency provides an indication of the general layout
and structure, and may be effective for detecting structurally similar web pages. TF
for a web application W is calculated as follows: (1) extract a Tag List TL of the tags
from all the pages in W , (2) for each page p ∈ W and for each tag t ∈ TL, calculate
TF (t, p), as the normalised frequency of occurrence of tag t in page p (after min-max
normalisation); and (3) create the output matrix TL ×W of the normalised TF values.
Word Frequency. The textual content of a page captures information that may be
salient for such web page. We assume that two web pages sharing similar textual content
shall have some degree of topical relatedness and thus should be grouped together. The
Clusterer can calculate the word frequency in two ways, considering: (1) only words
within the tag BODY (WF1); (2) only words within the tags TITLE, H1–H6, TABLE, LI–
UL–OL (WF2). With the former we take into account the full main content of the page,
whereas with the latter we follow the intuition that these tags may contain a succinct
representation of the page semantic content [26]. WF1 and WF2 for a web application
W are calculated as follows: (1) extract the Word List WL including the words from all
pages in W ; (2) remove stop-words7 from WL; (3) for each page p ∈ W and for each
word w ∈ WL, calculate WF1(w, p) and WF2(w, p), as the normalised frequency of
occurrence of word w respectively found in the page p within tag BODY or tags TITLE,
H1–H6, TABLE, LI–UL–OL (after min-max normalisation); and (4) create two output
matrixes WL ×W , in our study associated respectively with WF1 and WF2.

7 Retrieved from http://www.lextek.com/manuals/onix/stopwords1.html

URL (Uniform Resource Locator) may also be a good indicator of similarity between
web pages [23]. Two pages sharing a part of the URL are likely to be semantically close.
Although this is not always true (e.g., Ajax single page applications), there are works
showing the effectiveness of URLs for structural clustering [2]. Parameters are stripped
before computing the Levenshtein distance [15], to reduce their potentially disruptive
effects. Given W as the set of web pages of the web application, the output is a matrix
W ×W (later indicated as URL-Lev) of values ranging in [0..1], where an entry equal
to 0 indicates two totally dissimilar URLs, while 1 indicates a perfectly matching pair
of URLs.
DOM (Document Object Model) is a dynamic hierarchical structure representing the
user interface elements of a HTML page. We assume that two web pages sharing simi-
larities between their DOMs are likely to represent pages having analogous functionali-
ties and that they should be grouped in the same cluster. The DOM can be treated either
(1) as a tree-like structure, or (2) as a string. Given W , the set of web pages of the web
application, two distance matrixes W ×W can be calculated, in the first case using the
Robust Tree Edit Distance (RTED) algorithm [19], whereas in the second case using
the Levenshtein distance between the string representation of the DOM (after word/text
removal, to preserve only the structure). In our study, we refer to these two matrixes as
DOM-RTED and DOM-Lev, respectively.
Summary. To wrap up, the Clusterer extracts raw features (TF, WF1, WF2) from the
web pages, or features representing distance measures (URL-Lev, DOM-RTED, DOM-
Lev), to be given in input to the clustering algorithms. It is important to highlight that
K-means++ needs to compute the mean feature vector (centroid) from the set of feature
vectors in the same cluster. This is not possible in the case of URL-Lev, DOM-RTED,
DOM-Lev, since feature vectors represent distance measures.

3.2 Potential Getter Methods Detection

In the Static Analyser of APOGEN we have integrated a differencing engine, based on
XMLUnit8, that takes into account the results of clustering and supports the automatic
creation of getter methods based on the DOM differences between web pages within
the same cluster (e.g., clones). We believe that such intra-cluster differences point to
dynamic portions of web pages, on top of which a tester might be interested in creating
an assertion. For instance, in Fig. 1, getter methods are created for the phone details
fields that vary across web pages in the same cluster. In order to minimise the number
of false positives (i.e., irrelevant differences), the differencing engine ignores case sen-
sitivity, white spaces, attribute value order and white-spaces between values, retaining
only the differences in the textual node elements which were modified or added.

3.3 From Web Page Clusters to Page Objects

We use hard clustering, i.e., each web page is a member of exactly one cluster, be-
cause we want to map each cluster into a page object and each web page must be
represented by a unique page object. Let us consider Fig. 4, showing a cluster of web

8 http://www.xmlunit.org/

state39

state35

PO1-2-3

Action1

Navigation1

Getter1

Navigation1

text1

PO1

Navigation1

PO2

text2

state44

Action1

Navigation1

PO3

Fig. 4. Pictorial view of APOGEN page object merging strategy, applied to PetClinic web pages

pages C = {state35, state39, state44} from the PetClinic web application, one of the
experimental objects considered in our study. State35 and state39 contain the same
navigation web element (e.g., a link that can be clicked) and two different textual ele-
ments, while state44 contains the same navigation web element and an action (e.g., a
text field that can be filled in).

Without considering the results of clustering, APOGEN would generate three page
objects PO1, PO2, PO3 for state35, state39 and state44. The same navigation method
navigation1 is replicated three times in all page objects; no getter methods are available
for text1 and text2, and the third page object has one method, to perform action1. For
the web tester would be quite difficult to decide when to use PO1, PO2 or PO3. More-
over, manual corrections and adjustments to the automatically generated page objects
should be repeated three times.

By using clustering, instead, APOGEN generates a sole page object, corresponding
to the entire cluster. The navigation method navigation1 appears only once in such page
object. The action method action1 is also included. For what concerns getter methods,
only textual elements belonging to structural clones and differing across such clones are
turned into getters. In our example, state35 is a clone of state39 (i.e., their DOMs are
structurally equivalent) and text1 differs from text2. Hence, a getter method to retrieve
the value of the dynamically changing textual element, namely getter1, is generated.
The result is a merged page object PO1−2−3 = {navigation1, action1, getter1}, ex-
posing all functionalities of state35, state39 and state44 relevant for web test creation.

4 Empirical Evaluation

We present the empirical study conducted to evaluate the effectiveness of clustering in
grouping similar web pages conceptually associated with the same page object, and the
quality of the page objects generated by APOGEN. We follow the guidelines by Wohlin
et al. [31] on designing and reporting empirical studies in software engineering. Our
tool and demo videos are available at: http://sepl.dibris.unige.it/APOGEN.php.

4.1 Experimental Objects

We selected six real-world web applications covering different application domains,
whose properties are shown in Table 1. PetClinic is a veterinary clinic information sys-
tem which allows veterinarians to manage data about pets and their owners. It has been
developed using Java Spring Framework and makes use of technologies as JavaBeans,
MVC presentation layer and Hibernate. AddressBook is a PHP/MySQL-based address
and phone book, contact manager, and organiser. PPMA is a web based password man-
ager. Claroline is a collaborative learning environment which allows teachers or edu-
cation institutions to administer courses online. The software provides group manage-
ment, forums, document repositories, calendar. Phonecat is a web-based phone catalog
using the AngularJS framework. FluxBB is a fast and light PHP forum application.

Table 1. EXPERIMENTAL OBJECTS

Id Name Source LOC

WA1 ADDRESSBOOK
(8.2.5) http://sourceforge.net/projects/php-addressbook 30.1K (PHP)

1.1K (JS)
WA2 PHONECAT https://github.com/angular/angular-phonecat/ 0.4K (JS)

WA3 CLAROLINE
(1.11.5) http://sourceforge.net/projects/claroline/ 285K (PHP)

36K (JS)

WA4 FLUXBB
(1.5.8) http://fluxbb.org/ 21K (PHP)

WA5 PETCLINIC https://github.com/spring-projects/spring-petclinic 6.1K (JAVA)
432 (JSP)

WA6 PPMA
(0.2) http://sourceforge.net/projects/ppma/ 9K (JS)

3.5K (PHP)

4.2 Research Questions

We conducted our empirical study to address the following research questions:

RQ1 (effectiveness): What clustering algorithm provides the best result and how do
different algorithms compare with each other?

RQ2 (reduction): What is the maximum reduction achievable in the number of gener-
ated Page Objects when using clustering with APOGEN?

RQ3 (quality): How successful is the clustering-aided APOGEN in generating high
quality Page Objects, i.e., Page Objects similar to those a developer would write?

4.3 Metrics

A human expert has manually defined the Gold Standard for clusters and page objects,
i.e., the ideal grouping of web pages into clusters (Clusters Gold Standard, C-GS) and
the ideal page object classes associated with the clusters (Page Objects Gold Standard,
PO-GS).

Both Gold Standards require the intervention of a human for their construction.
To limit any bias or subjectivity, we asked an external third party (hereafter referred
as EXP) to define the Gold Standards. EXP is a programmer with strong professional
experience in developing and testing web applications using page objects. EXP has
substantial industrial experience and was not involved in the development of APOGEN.

Table 2. JACCARD SIMILARITY MATRIX. THE BEST PAIRS THAT A LINEAR ASSIGNMENT AL-
GORITHM WOULD PRODUCE ARE HIGHLIGHTED IN BOLD

C

C-GS
gs0 gs1 gs2 gs3

c0 0.50 0.00 0.50 0.00

c1 0.00 0.50 0.00 0.00

c2 0.00 0.50 0.00 0.50
c3 0.00 0.00 0.00 0.50

The metric we used to answer RQ1 is the Partition Edit Distance (PED), which in
our case measures the minimum number of web pages that must be moved between
clusters to make two web page partitions (i.e., the output of clustering and C-GS) the
same. We chose PED because it provides a direct measure of the tester’s manual actions
necessary to produce the target clustering (i.e., C-GS) starting from the output produced
by any of the considered clustering algorithms. In fact, a high value of PED means that
many web pages need to be reassigned, whereas a low value of PED means that the
clusters are close to C-GS (with few moves required). In the following, we introduce
the concepts behind PED and how to calculate it. Let us assume to have a set of six web
pages W = {p1, p2, p3, p4, p5, p6} and that we want k = 4 separate clusters (gs0, gs1,
gs2, gs3). Suppose we have the following C-GS:

gs0 → {p1} gs1 → {p3, p4} gs2 → {p2} gs3 → {p5, p6}
whereas a hypothetical clustering algorithm C gives the following partitions:

c0 → {p1, p2} c1 → {p3} c2 → {p4, p6} c3 → {p5}
We first compare each cluster gsi from C-GS with each cluster cj from C using the

Jaccard similarity coefficient:

J(ci, gsj) =
|ci ∩ gsj |
|ci ∪ gsj |

where 0 indicates no element in common; 1 total agreement. For instance, the Jaccard
similarity between c0 and gs0 is J(c0, gs0) = |{p1}| / |{p1, p2}| = 0.5.

The Jaccard similarity matrix for all possible pairs 〈ci, gsj〉 is shown in Table 2.
Given the similarity matrix between two partitions, PED can be obtained by solving the
following linear assignment problem:

Given two partitions C and C-GS, find the partial bijection between the elements of
C and C-GS (i.e., partial, unique assignment of elements from C to elements of C-GS)
that maximises the total similarity between paired elements.

In our example, a linear assignment algorithm (we used the Hungarian Method [8])
would produce the following best pairs BP (highlighted in bold in Table 2):

BP = {〈c0, gs0〉, 〈c1, gs1〉, 〈c2, gs3〉, 〈c3, gs2〉}

Given BP , the asymmetric set difference cardinality between each pair gives us the
number of pages that must be moved to unify the two partitions. Formally, PED is
computed as follows:

PED(C,C-GS) =
∑

〈ci,gsj〉∈BP

|ci \ gsj | + |unassigned(C,BP)|

If there are unassigned clusters in C, due to the size of C being different from
that of C-GS, the total number of pages contained in such unassigned clusters are also
added in the formula given above. Although the asymmetric set difference operator (\)
has been used in the formula to compute PED, it can be easily shown that PED is
symmetric: PED(C,C-GS) = PED(C-GS, C). In our example: PED(C,C-GS) =
|c0 \ gs0|+ |c1 \ gs1|+|c2 \ gs3|+ |c3 \ gs2| = 1+0+1+1 = 3. Thus, a tester would
need to move three web pages from the clusters of C to obtain C-GS: p2 from c0 to c2,
p4 from c2 to c1 and p6 from c2 to c3. This gives a rough estimate of the effort required
for the manual correction of the clustering output.

To answer RQ2, we counted the number of generated page objects first disabling
and then enabling the clustering in APOGEN.

To answer RQ3, for each page object of PO-GS, we manually inspected all methods:
(i) classifying the kind of functionality as navigational, action or getter; (ii) determining
whether the method has a semantically equivalent counterpart in the automatic page
objects (we tag such methods as Equivalent); (iii) determining whether the method has
a counterpart in the automatic page objects that needs minor modifications (we tag such
methods as To Modify); (iv) determining any missing methods (we tag such methods as
Missing). Further, we are interested in determining if APOGEN leads to the generation
of extra methods, e.g., methods not contained in PO-GS. The number of Equivalent, To
Modify, Missing and Extra methods allows us to estimate the possibility to use the code
produced by APOGEN as-is, and the effort needed to manually correct the methods to
be modified, or to be added/deleted.

4.4 Experimental Procedure

To answer RQ1, we proceeded as follows:
(i) We ran the Crawler over each web application to infer its model. We fed the Crawler
with the data necessary to explore each application, such as login credentials. EXP man-
ually inspected the crawling outcomes and created a C-GS for each web application.
(ii) Clustering algorithms need the specification of the number of clusters k as input.
Such a value can be either provided manually or can be obtained by automated methods,
such as the Silhouette method [22]. We have compared the optimal number of clusters,
kopt available from the C-GS, with the number produced by the Silhouette method and
the two are very close to each other in all experimental objects (with median differ-
ence 3, maximum difference 5 and minimum 0). Hence, we ran APOGEN on each web
application with each (algorithm, feature) pair searching for exactly kopt clusters. We
compared the clusters obtained from APOGEN with C-GS.
(iii) We calculated PED for all (algorithm, feature) pairs, in order to assess: (1) what is
the best (algorithm, feature) pair, and (2) how far the best algorithm is from the C-GS.
To answer RQ2, we ran APOGEN on each web application twice, both enabling and
disabling the Clusterer, and we counted the number of generated page objects.
To answer RQ3, we proceeded as follows. For each web application:
(i) EXP manually created PO-GS from the optimal clusters in C-GS;

Table 3. COMPARISON BETWEEN AUTOMATIC CLUSTERS AND GOLD STANDARD (PED)
Clustering Algo (Feature) WA1 WA2 WA3 WA4 WA5 WA6 Tot
Hierarchical (DOM-RTED) 4 0 6 7 0 1 18
Hierarchical (URL-Lev) 1 3 4 8 2 6 24
K-means++ (TF) 2 5 8 8 0 3 26
Hierarchical (DOM-Lev) 4 0 9 5 7 3 28
K-means++ (WF2) 4 4 8 7 6 3 32
K-means++ (WF1) 2 3 9 9 7 3 33
K-medoids (TF) 5 6 11 10 6 4 42
K-medoids (DOM-RTED) 6 5 12 9 6 4 42
K-medoids (WF1) 5 2 11 10 11 3 42
K-medoids (WF2) 5 3 12 10 10 4 44
K-medoids (DOM-Lev) 5 5 14 10 7 5 46
K-medoids (URL-Lev) 5 9 12 10 7 6 49

(ii) we inspected and compared PO-GS with the page objects automatically generated
by APOGEN. In detail, for each page object, we manually classified all methods as
navigational, action or getter, and as Equivalent, To Modify, Missing, or Extra.

4.5 Results

Table 3 reports the values of PED for the admissible combinations of algorithm (Hierar-
chical, K-means++, K-medoids) and feature (TF, WF1, WF2, DOM-RTED, DOM-Lev,
URL-Lev).

Globally, the best algorithm is Hierarchical, which occupies the first, second and
fourth positions of the rank. It scores 18 (DOM-RTED), 24 (URL-Lev), and 28 (DOM-
Lev). K-means++ has variable performances: it is ranked third with a value of 26 (TF)
but also fifth with a value of 32 (WF2) and sixth with a value of 33 (WF1). K-medoids
stabilises in the worse positions of the rank, independently from the input data matrix.
Its values range between 42–49.
RQ1 (effectiveness): considering all the applications, Hierarchical clustering resulted
to be the optimal choice, being in the first, second and fourth position of the PED rank
and undergoing little oscillations in its performance across different web applications.
In our experiment, the effort to align its clusters with C-GS consists on average of two–
four page moves per application. K-means++ also proved to be a good choice when
used with the data matrix representing the tag frequencies. Indeed, its performance is
aligned with that of the Hierarchical algorithm on WA5 (PetClinic). To summarise:

Hierarchical clustering applied to the DOM tree distance matrix has the best
performance, producing clusters of web pages very close to those manually
defined a human tester.

RQ2 (reduction) Table 4 shows data about the reduction in the number of generated
page objects when using clustering in APOGEN. The first column shows the experimen-
tal objects, whereas in the second column are the number of page objects generated
by APOGEN without considering clustering, which is equal to the number of dynamic
states retrieved by the Crawler. The third column displays the number of clusters de-
fined in the C-GS, which is equal to the number of page objects produced by APOGEN,
since kopt was provided as input to the clustering algorithm (the value of k obtained
from Silhouette would be only slightly different).

Table 4. REDUCTION OF GENERATED PAGE OBJECTS WHEN USING CLUSTERING

Web Application No Clustering Clustering % Reduction
PETCLINIC 26 10 61.54
ADDRESSBOOK 20 10 50.00
PPMA 16 8 50.00
CLAROLINE 63 15 76.19
PHONECAT 21 2 90.48
FLUXBB 55 13 76.19
Total 201 58 67.43

To summarise, in our experiment:

When using clustering, the reduction in the number of generated page objects
ranges between 50–90% (average 67%).

Beyond the mere quantitative data, the substantial reduction achieved by cluster-
ing gives an idea of the reduction in page object maintenance that is expected to occur
during software and testware evolution. Empirical studies that assess human costs as-
sociated with test maintenance are required, however, to substantiate our belief.
RQ3 (quality): Table 5 shows the number of methods (navigational, action or getter)
that we tagged as Equivalent (Eq), that need to be modified (TM), missing (Mis) and
extra (Extra) w.r.t. PO-GS. The first column shows the experimental objects. The sec-
ond, third and fourth macro-columns show the cardinality of navigational, action and
getter methods generated by APOGEN (macro-columns are split into Eq, TM, Mis and
Extra). The fifth macro-column shows the amount of methods contained in PO-GS (i.e.,
the key functionalities a web tester would put as methods in the page objects). The sixth
macro-column reports the sum over all kinds of methods.

Based on the data, we can notice that on average about 75% of the methods are
equivalent, 7% are to modify, and 18% are missing. Looking at results by type, for
what concerns navigational methods, most are directly usable, as produced by APOGEN,
(about 80%), none is to be modified and 16% are missing. About the actions, we can
notice that roughly 51% are equivalent, 28% need to be manually modified and 21% are
missing. For the getter methods, which are generated on top of intra-clusters differences
(see Section 3), we can notice that 84% are equivalent, none is to be modified and 16%
are missing. Concerning the methods tagged as extra, i.e., methods that are not explicitly
present in the C-GS, we have a total of 53 methods, all falling in the getter category.

About 75% of the generated methods are equivalent to those defined by a hu-
man tester, 7% need to be manually refined, and 18% are missing.

Table 5. COMPARISON BETWEEN AUTOMATIC AND MANUAL PAGE OBJECTS

Web Application # Navigational # Action # Getter Total (GS) # Methods
Eq TM Mis Extra Eq TM Mis Extra Eq TM Mis Extra Eq+TM+Mis Eq TM Mis Extra

PETCLINIC 9 0 0 0 6 0 3 0 8 0 3 0 29 23 0 6 0
ADDRESSBOOK 10 0 3 0 4 3 4 0 6 0 1 23 31 20 3 8 23
PPMA 4 0 8 0 4 1 1 0 1 0 2 11 21 9 1 11 11
CLAROLINE 15 0 2 0 7 4 0 0 6 0 3 15 37 28 4 5 15
PHONECAT 1 0 0 0 0 0 1 0 27 0 0 4 29 28 0 1 4
FLUXBB 14 0 0 0 1 4 0 0 6 0 3 0 32 26 4 2 0
Total 53 0 13 0 22 12 9 0 59 0 11 53 179 134 12 33 53

4.6 Qualitative Analysis

For space reasons, we focus the qualitative analysis on the main page of the FluxBB
web application (Fig. 5 top). This example is representative because the page object
automatically generated by APOGEN (Fig. 5 bottom) for such page includes all the
cases (Equivalent, ToModify, Missing, Extra) described in Section 4.3.

The navigational method goToUserlist() is an example of Equivalent method (a). In
fact, it replicates exactly what the tester would do while performing a navigation from
the current page toward the user list page: click on the menu item and change the state
by instantiating a new proper page object (Userlist) and by passing it the WebDriver
instance.

The action method qjump(), instead, is an example of method ToModify (b). First,
the name retrieved from the form attributes is not very expressive (the label “Jump
To” would have been a better choice for the name, in this case). Second, the return
parameter with the target object is missing. The reason is that static analysis misses
the next dynamic state. The returned page object should be a TestForum page object,
whereas if an incorrect parameter is passed as args0, the page object should manage
the error. The second getter method is an example of Extra method (c), because it refers
to a web element within the page representing the same information targeted by the
first getter (see the two SPAN “Pages: 1” fields in Fig. 5). In this case, the tester may
keep only one of the two getters (e.g., the first one), deleting the second. On the other
hand, the tester may check for any inconsistency between the two values, so having two
separate methods might be regarded as useful. We decided to leave this choice to the
tester. In fact, we believe that the generation of extra getter methods does not impact
so negatively the readability of the page objects. On the other hand, no clones in the
cluster exposed any differences, while some variability might occur, for instance, in the
Replies field (d). Thus, we marked such field as a Missing getter.

4.7 Discussion

Hierarchical agglomerative clustering offered stable performance across all web appli-
cations, possibly because of the single linkage (min) method, which aggregates clusters
when their minimum similarity is the highest among all possible pairs of clusters be-
ing aggregated, hence leading to aggregation choices that we think are close to those
made by a human when defining the Gold Standard. Content-based features (WF1 and
WF2) seem to capture a significant amount of information related to the semantic con-
tent and sometimes improve the effectiveness of clustering, though they are not the
best choice, according to our study. The features calculated over the DOM (RTED and
Lev) work best with Hierarchical clustering, while they perform quite poorly with K-
medoids. Thus, we can conclude that structural properties have the best performance,
in particular DOM-RTED, TF and DOM-Lev, especially if coupled with Hierarchical
clustering.

Concerning the results for RQ3, we can notice that there were no methods to be
modified in the navigational and getter categories. This is mainly due to the code trans-
formation phase, in which the mapping is 1-1 for these kinds of methods (see Sec-
tion 2.1). On the other hand, 28% of action methods needed a manual refinement, usu-
ally to add some complex interaction pattern (e.g., a mandatory click on a checkbox

(b)

Last PostViewsReplies

FluxBB 158 Forum
Unfortunately no one can be told what FluxBB is - you have to see it yourself.

Index User list Search Register Login

You are not logged in.

Index Test Forum>>

Pages: 1

Topic

Test Topic by admin 0 13 2015-05-26 10:08:48 by admin

Pages: 1

Index Test Forum>>

Jump To

public class ViewForum {

@FindBy(name=“userlist”)
private WebElement userlist;

@FindBy(name=“select”)
private WebElement select_id;
…

public Userlist goToUserlist(){
userlist.click();
return new Userlist(driver);

}

(a)

public void qjump(String args0){
select_id.sendKeys(args0);
input_go.click();

}
public String get_span_1(){

return span_1.getText();
}

public String get_span_2(){
return span_2.getText();

}
}

(c)

(d)

Fig. 5. The main page of FluxBB web application (top), and a portion of the page object generated
by APOGEN (bottom)

before triggering a form submission). These patterns cannot yet be captured by the cur-
rent version of APOGEN, which is not able to automatically add the missing statements.
Although this is an interesting challenge for future work, it represents a minor issue,
since the majority of the actions are correctly generated and ready for use by develop-
ers.

For similar reasons (static analysis of the DOM and 1-1 model to code transforma-
tion), we have a complete absence of Extra action and navigational methods. Concern-
ing the getters, instead, there are 53 extra getter methods. This result is not surprising,
since the problem of identifying the getters that are potentially relevant for the con-
struction of assertions, is a challenging problem. We implemented a heuristic, which
suffers from the problem of false positives. On the other hand, the use of clustering and
intra-cluster differencing captured most of the web page dynamic sections, producing
a high proportion of the getter methods in the gold standard (84%). As noticed before,
the generation of additional getter methods is not expected to impact so negatively the
activity of the tester. It should also be noticed that Phonecat and PetClinic have no extra
getters and that there are on average 9 extra getters per web application over all the page
objects, an amount which we think is acceptable for web testers.

4.8 Threats to Validity

For what concerns the external validity and the generalisation of results, we selected real
size web applications spanning different domains, which makes the context realistic,
even though studies with other applications are necessary to corroborate our findings.

About the internal validity, a possible issue is represented by the manually created
gold standards, both for the clusters and the page objects. It should be noticed that we

must necessarily rely on a manual gold standard for evaluating the output of APOGEN,
because no automated method can provide us with the ideal clusters and page objects.
We minimised this threat by having the gold standards produced by a third subject
independent from us and from APOGEN.

For what concerns the construct validity, for the evaluation metrics used to answer
RQ3 we did not adopt Precision-Recall measures, because they rely on a boolean clas-
sification of the output (either correct or incorrect), while in the case of page object
methods labelled as To Modify or Extra it is not completely appropriate to deem them
as incorrect (neither as correct). We preferred to present the data as they are, split into
four categories (Equivalent, To Modify, Missing, Extra), and to discuss them in terms
of usability, benefits and expected manual actions required for the refinement of the
automatically generated page objects.

5 Related Work

The automated creation of page objects for E2E web testing is a completely new re-
search field, so, to the best of our knowledge, there are no strictly related previous
works. However, there are related works that deal with applications of clustering tech-
niques to support web testing and engineering [3–5, 16, 20, 21, 28].
State Objects. Van Deursen [29] describes a state-based generalisation of page objects.
From a testing viewpoint, moving a page object to the state level makes the design of test
scenarios easier. Besides the mere terminological difference, the work by van Deursen
describes a series of guidelines and good practices (e.g., let each state correspond to
a state object) that we share and tried to incorporate in the development of APOGEN,
since our ultimate goal is the automatic generation of meaningful page/state objects.
Clustering. Crescenzi et al. [5] present an algorithm to cluster web pages, exploiting the
structural similarities of the DOMs. In this paper, we studied several structural similarity
measures beyond the DOM, with the aim of supporting the clustering of web pages
from a testing perspective. Tonella et al. [28] provide two methods for web clustering
evaluation, the gold standard and a task oriented approach, together with guidelines and
examples for their implementation. In our paper, we compared the results of web page
clustering against a gold standard, in order to ensure its meaningfulness from the web
testing viewpoint. In another work, Ricca et al. [20] utilise keyword-based clustering to
improve the comprehension of web applications. In our paper, we did not limit ourselves
to content-based metrics. Actually, structural properties (e.g., DOM or TF) showed to
be more effective.
Crawling/Differencing. Choudhary et al. [4] present a dynamic technique based on
differential testing to automatically detect cross-browser issues (XBI) and assist devel-
opers in their diagnosis. The approach operates on single web pages and focuses on vi-
sual analysis, whereas we perform intra-cluster DOM-differencing. Mesbah et al. [16]
analyses an entire web application, using dynamic crawling, also for the retrieval of
XBIs. Similarly, we adopt crawling and web page differencing, but our approach is
constrained to finding textual differences between intra-cluster web pages, on top of
which a tester can build meaningful assertions. Choudhary et al. [3] combined and ex-
tended the two above-mentioned approaches for XBI detection in the tool CROSSCHECK.

Even though this paper shares some methods with us, such as the reverse engineering
of a web application model with a crawler, and performs DOM differencing between
web pages, we use clustering, which is an unsupervised machine learning technique,
instead of a classifier, and we target a completely different goal, automated page object
construction.

6 Conclusions and Future Work

We presented a novel approach, based on web page clustering, to automatically generate
page objects for web testing. The tool APOGEN, which implements the approach, has
been applied to six existing web applications. Experimental results indicate that our
clustering approach is effective to group semantically related web pages. Furthermore,
the page objects obtained from the output of clustering are very similar to the page
objects that a developer would create manually. Indeed, 75% of the code generated by
APOGEN can be used as-is by a tester, breaking down the manual effort for page object
creation. Moreover, a large part (84%) of the page object methods created to support
assertion definition corresponds to meaningful and useful behavioural abstractions.

As future work, we plan to improve the heuristics used to create the getter methods,
which cannot be applied to single page clusters. We will investigate a complementary
approach, for input data generation, capable of exposing the variable part of multiple
as well as single pages in each cluster. We will also study visual mechanisms, based
on image processing, to retrieve dynamic page portions [3] and produce visual page
objects [11]. Finally, we plan to improve the maintainability of the page objects by
enhancing APOGEN with robust web element localisation techniques [12–14].

References

1. D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceed-
ings of SODA, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

2. L. Blanco, N. Dalvi, and A. Machanavajjhala. Highly efficient algorithms for structural
clustering of large websites. In Proceedings of WWW, pages 437–446, 2011.

3. S. R. Choudhary, M. R. Prasad, and A. Orso. Crosscheck: Combining crawling and differ-
encing to better detect cross-browser incompatibilities in web applications. In Proceedings
of ICST, pages 171–180, 2012.

4. S. R. Choudhary, H. Versee, and A. Orso. Webdiff: Automated identification of cross-
browser issues in web applications. In Proceedings of ICSM, pages 1–10, 2010.

5. V. Crescenzi, P. Merialdo, and P. Missier. Clustering web pages based on their structure.
Data Knowledge Engineering, 54(3):279–299, Sept. 2005.

6. L. Kaufman and P. Rousseeuw. Clustering by means of medoids. Statistical Data Analysis
Based on the L1-Norm and Related Methods, pages North–Holland, 1987.

7. L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster analysis.
Wiley series in probability and mathematical statistics. Wiley, 1990.

8. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

9. M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable web test-
ing: An empirical assessment during test case evolution. In Proceedings of 20th Working
Conference on Reverse Engineering, WCRE 2013, pages 272–281. IEEE, 2013.

10. M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Approaches and tools for automated end-to-
end web testing. Advances in Computers, 101:193–237, 2016.

11. M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Automated generation of visual web tests
from DOM-based web tests. In Proceedings of 30th ACM/SIGAPP Symposium on Applied
Computing, SAC 2015, pages 775–782. ACM, 2015.

12. M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Meta-heuristic generation of robust XPath lo-
cators for web testing. In Proceedings of 8th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2015, pages 36–39. IEEE, 2015.

13. M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to increase the robustness
of web test cases. In Proceedings of 8th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2015, pages 1–10. IEEE, 2015.

14. M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+: An algorithm for generating ro-
bust XPath locators for web testing. Journal of Software: Evolution and Process, 28(3):177–
204, 2016.

15. V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966.

16. A. Mesbah and M. R. Prasad. Automated cross-browser compatibility testing. In Proceed-
ings of ICSE, pages 561–570. ACM, 2011.

17. A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. TWEB, 6(1):3:1–3:30, 2012.

18. F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An empirical study of client-side
JavaScript bugs. In Proceedings of ESEM, pages 55–64. IEEE Computer Society, 2013.

19. M. Pawlik and N. Augsten. Efficient computation of the tree edit distance. ACM Transaction
on Database Systems, 40(1):3:1–3:40, Mar. 2015.

20. F. Ricca, E. Pianta, P. Tonella, and C. Girardi. Improving web site understanding with
keyword-based clustering. Journal of Software Maintenance, 20(1):1–29, 2008.

21. F. Ricca and P. Tonella. Detecting anomaly and failure in web applications. IEEE Multime-
dia, 13(2):44–51, 2006.

22. P. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20(1):53–65, Nov. 1987.

23. S. Sampath. Advances in user-session-based testing of web applications. Advances in Com-
puters, 86:87–108, 2012.

24. A. Stocco, M. Leotta, F. Ricca, and P. Tonella. APOGEN: Automatic page object generator
for web testing. Software Quality Journal, page (under review).

25. A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why creating web page objects manually if
it can be done automatically? In Proceedings of 10th IEEE/ACM International Workshop on
Automation of Software Test, AST 2015, pages 70–74. IEEE, 2015.

26. A. Tombros and Z. Ali. Factors affecting web page similarity. In Proceedings of ECIR, pages
487–501. Springer-Verlag, 2005.

27. P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing. Advances in Com-
puters, 93:1–51, 2014.

28. P. Tonella, F. Ricca, E. Pianta, and C. Girardi. Evaluation methods for web application
clustering. In Proceedings of WSE, pages 33–40. IEEE, 2003.

29. A. van Deursen. Testing web applications with state objects. Communications of ACM,
58(8), 2015.

30. I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

31. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell. Experimentation in Software
Engineering. Springer, 2012.

