
Copyright:

© ACM, 2018. This is the author's version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of the 1st ACM SIGSOFT

International Workshop on Ensemble-Based Software Engineering (EnSEmble 2018)

https://doi.org/10.1145/3281022.3281023

Towards an Approach for Developing and Testing

Node-RED IoT Systems

Diego Clerissi, Maurizio Leotta, Gianna Reggio, Filippo Ricca

Abstract:

Node-RED is a visual tool based on the flow-based programming paradigm and built on

NodeJS, which is used for developing IoT systems. In Node-RED, the developer can follow

her own personal flavour for wiring devices and online services together, and the same

system can be developed in many different ways. Each day, the Node-RED community

submits to users novel solutions, and even if there exist frameworks for testing Node-RED

flows, they are not supported by a systematic testing technique. Hence, the freedom granted

by Node-RED may hinder the understandability of the produced artefacts and the detection

of faults.

In this work, we propose a preliminary version of an approach for developing and testing a

Node-RED system starting from a UML model of its dynamic and static aspects. A JSON

object representing the Node-RED system is generated from the model, while executable

Javascript test scripts relying on the Mocha test framework are generated from selected

portions of the model, enriched with control points to perform checks over the system

properties. We believe that a model produced with our approach may help in the early

system validation by detecting faults and deviations from its expected behaviour.

Digital Object Identifier (DOI):

https://doi.org/10.1145/3281022.3281023

Towards an Approach for Developing and Testing Node-RED IoT
Systems

Diego Clerissi
Dip. di Informatica, Bioingegneria, Robotica e Ingegneria

dei Sistemi (DIBRIS), Università di Genova, Italy
diego.clerissi@dibris.unige.it

Maurizio Leotta
Dip. di Informatica, Bioingegneria, Robotica e Ingegneria

dei Sistemi (DIBRIS), Università di Genova, Italy
maurizio.leotta@unige.it

Gianna Reggio
Dip. di Informatica, Bioingegneria, Robotica e Ingegneria

dei Sistemi (DIBRIS), Università di Genova, Italy
gianna.reggio@unige.it

Filippo Ricca
Dip. di Informatica, Bioingegneria, Robotica e Ingegneria

dei Sistemi (DIBRIS), Università di Genova, Italy
filippo.ricca@unige.it

ABSTRACT
Node-RED is a visual tool based on the flow-based programming
paradigm and built on NodeJS, which is used for developing IoT
systems. In Node-RED, the developer can follow her own personal
flavour for wiring devices and online services together, and the
same system can be developed in many different ways. Each day,
the Node-RED community submits to users novel solutions, and
even if there exist frameworks for testing Node-RED flows, they
are not supported by a systematic testing technique. Hence, the
freedom granted by Node-RED may hinder the understandability
of the produced artefacts and the detection of faults.

In this work, we propose a preliminary version of an approach
for developing and testing a Node-RED system starting from a
UML model of its dynamic and static aspects. A JSON object repre-
senting the Node-RED system is generated from the model, while
executable Javascript test scripts relying on the Mocha test frame-
work are generated from selected portions of the model, enriched
with control points to perform checks over the system properties.
We believe that a model produced with our approach may help in
the early system validation by detecting faults and deviations from
its expected behaviour.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; Software verification and validation; •Computer sys-
tems organization → Distributed architectures;

KEYWORDS
Node-RED, UML, Modelling, Testing, IoT, Javascript, Mocha
ACM Reference Format:
Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca. 2018.
Towards an Approach for Developing and Testing Node-RED IoT Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6054-8/18/11. . . $15.00
https://doi.org/10.1145/3281022.3281023

In Proceedings of the 1st ACM SIGSOFT International Workshop on Ensemble-
Based Software Engineering (EnSEmble ’18), November 4, 2018, Lake Buena
Vista, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3281022.3281023

1 BACKGROUND
In the context of the Internet of Things (IoT), where interconnected
and heterogeneous devices cooperate to complete tasks, sometimes
complex and safety-critical, proposing effective methods and ap-
proaches for developing and testing IoT systems is essential, but
brings a number of challenges [1].

Node-RED is a visual programming tool inspired by the flow-
based programming paradigm [7] and built on the NodeJS frame-
work, which provides solutions for developing IoT systems in terms
of nodes and flows. In Node-RED, a node represents the logics of a
device or, more generally, of a service provided by a system. Nodes
are wired together any time they have to cooperate/communicate
in order to complete tasks, hence they compose flows, which are
the portions of a system that logically group together sequences of
functionalities. The community behind Node-RED is quite active,
and new nodes based on the emerging technology are submitted
daily. There exist nodes for completing a variety of tasks, like read-
ing values from a database, implementing a Javascript function,
receiving the feeds from a Twitter account, establishing a com-
munication between two devices using the MQTT protocol, and
more.

Like any other programming language or tool, Node-RED gives
the developer the freedom to follow her own personal flavour for
developing a system. For example, shemay develop it using a unique
flow employing function nodes any time a global variable has to be
initialized, or she may choose to separate the logics of the system in
different flows and usemore fashionable nodes for the initializations
(e.g., change node1). This freedom, however, has the negative effect
that the developer may produce a working but unintelligible system,
hindering subtle faults and deviations from the system expected
behaviour that could be hard to detect and fix.

Indeed, understanding and testing Node-RED systems can be
difficult. An example is a flow having three nodes sequentially
wired: an “inject node” to simulate an external event, like clicking
on a physical button, followed by a “function node” to filter out the

1https://nodered.org/docs/user-guide/nodes#change

EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca

bad values received from the external source, followed by a “debug
node” to display the good ones. This simple example can be directly
tested in Node-RED by checking the values displayed by the debug
node, or by using one among the nodes purposely provided by the
Node-RED community for the verification of nodes and flows (e.g.,
assert node2). However, in case the example becomes trickier, it is
undeniable that, due to the heterogeneity of the involved function-
alities that in some cases may employ freshly released and barely
tested nodes, testing a complete flow can be hard. The Node-RED
community has tried to answer to the users’ testing demand3, and
even if finding online materials is relatively easy, like guides4 and
specific posts on message boards5, neither systematic approaches
nor methods have been yet proposed to test Node-RED flows.

In recent years, some proposals for assuring the quality of IoT
systems [4, 6] and, more generally, of Cyber-Physical Systems
(CPSs) [3, 12] have emerged, but these works do not specifically aim
at supporting the user in the development and testing activities of
a Node-RED system and do not provide solutions for automatically
generating Node-RED flows and test scripts from a model.

Concerning monitoring and formal verification of CPSs, Kane
et al. [3] presented a runtime monitor verification technique to
describe and detect properties violations of safety-critical systems,
formally described. Their research challenges are different from
ours and concern, for instance, how to properly abstract a sys-
tem based on a limited perspective of its internal behaviour and
how such abstraction is close enough to the real system, whereas
in our case the system behaviour has to be defined to guide the
development and the testing activities.

In a previous work [6], we proposed an approach for testing IoT
systems developed in Node-RED and equipped with a User Interface
(UI). The approach requires to model the system behaviour as a
UML state machine and to manually extract some test scenarios
making assertions over changes in the UI, hence it is specifically
focused on UI testing and does not aim at automatically generating
a Node-RED system from a model.

Kim et. al [4] introduced a service-based framework for testing
IoT systems, by adapting and evolving traditional testing method-
ologies to the context of IoT. The goals of the paper are different
from ours and do not directly answer problems concerning IoT
systems development, in particular in Node-RED.

Therefore, corroborated by the aforementioned reasons and in-
spired by the Node-RED testing framework6, which is now a prac-
tical solution for testing Node-RED flows from a unit level, in this
paper we propose an idea that should answer some of the emerged
problems and lead to an approach for effectively developing and test-
ing Node-RED systems. The preliminary version of the approach,
outlined in the paper, is based on the authors’ experience [5, 6] and
on some of the leading guidelines and ingredients of the modelling
methods proposed by the authors’ [2, 8, 9]. First, the dynamic and
static aspects of the system are modelled using UML activity and
class diagrams, from which JSON objects representing the working
Node-RED flows compliant to the UML model can be generated.

2https://www.npmjs.com/package/node-red-contrib-assert
3https://github.com/node-red/node-red/wiki/Testing
4e.g., http://noderedguide.com/
5e.g., https://discourse.nodered.org/
6https://www.npmjs.com/package/node-red-node-test-helper

Then, by selecting portions of the model enriched with control
points to check over the system properties, it is possible to generate
test scripts able to exercise the corresponding system flows. The
test scripts will be executed using Mocha7, a flexible and practical
test framework that runs on NodeJS and supports many assertion
libraries. Interactions in the early phase of the approach between
the professionals and the stakeholders are necessary, in order to
obtain useful feedbacks for developing the right system without in-
troducing faults or deviations from the system expected behaviour
and to focus on the stakeholders’ needs.

In Section 2 we introduce the running example used for present-
ing our approach, which is outlined in Section 3, while conclusions
and future work are given in Section 4.

2 RUNNING EXAMPLE
To present our approach, as running example we have chosen a
simple IoT system to be developed in Node-RED and consequent-
ly tested. The system is composed of a Reader Device and a
Temperature Setter. The Reader Device reads from a contin-
uous file stream the last 24 hours environmental degrees Celsius
temperatures (range [-20, 40]) recorded outside a room by an exter-
nal source. The values are transmitted to the Temperature Setter,
by using the MQTT protocol, which evaluates its internal state
in the following way. It computes the average of the received val-
ues and checks it against the one computed the day before and,
depending on the variation between the two averages, it sets its
internal state to Colder Temperature, if the temperature inside
the room has to be increased (i.e., the old average is higher than
the new one), to Same Temperature if no change is needed, or to
Warmer Temperature, if the temperature inside the room has to be
reduced. Depending on the internal state and on other parameters,
finally the Temperature Setter sets the daily temperature inside
the room.

We have considered the possibility that the developers may
not have decided yet how to precisely handle each Temperature
Setter state; for example, they may want it to be implemented in
Node-RED as a variant of the many flows involving a thermostat
node8. The development and the testing activities over such system
should not be limited because of some unclear parts in its behaviour,
even more if the system is complex or safety-critical; instead, the
professionals may want to have a portion immediately working as
compliant, even if incomplete, and another portion to be iteratively
refined and tested in the future. A sketched representation of the
behaviour of the running example is shown in Figure 1. Notice that
step 5. Set Temperature* is labelled with an asterisk to indicate
that still has to be precisely defined.

3 THE APPROACH
The approach we propose in this paper, sketched in the activity
diagram of Figure 2, is based on our personal experience in Node-
RED [5, 6] and on the issues and the open questions that are daily
posted by the users community.

As shown in Figure 2, different tasks have to be completed in
order to generate the Node-RED flows compliant to the system

7https://mochajs.org
8e.g., https://www.npmjs.com/package/node-red-contrib-ramp-thermostat

Towards an Approach for Developing and Testing Node-RED IoT Systems EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA

Figure 1: The running example.

expected behaviour and the executable test scripts to check if faults
or deviations have been introduced during the system development.
“Node-RED Flows Generation” and “Mocha Test Script Generation”
tasks are marked in red because they will be tool-supported.

To represent the behaviour of Node-RED IoT systems we have
chosen UML, since is widely known and used [10, 11] and can
naturally describe the dynamic aspects of Node-RED flows, by
means of activity diagrams, and the static properties of the nodes
(e.g., the body of a function, the TCP communication settings), by
means of class diagrams and OCL expressions. Moreover, the XML
Metadata Interchange (XMI) standard adopted by UML models is
supported by many tools (e.g., Papyrus9) and transformations to
other languages already exist (e.g., ecorejs10 for Javascript).

3.1 Behaviour Modelling
This task requires the designer to model, with a UML activity dia-
gram, the behaviour of the system that is intended to be developed
and tested. In this task, only the nodes and the wires between them
are important. Currently, we have restricted the activity diagram to
the following UML constructs that, in our opinion, are sufficient to
represent the basic Node-RED nodes11: action nodes, decision/merge
nodes, fork/join nodes, object nodes, swimlanes, activity edge connec-
tors, initial nodes, activity final nodes, flow final nodes, send signal
events, accept (time) events, exception handlers, input pins, and con-
trol/object flows.

In our approach, each Node-RED node has its own UML coun-
terpart. For example, the inject node transmits information based
on the external event it receives, which can be repeated in time
(e.g., send a message every 10 seconds), hence we have chosen to
represent it as a UML accept (time) event, where the event can be
timed depending on its repeatability. Another example is the switch
node, that in UML is represented with a decision node. To improve
the model understandability, stereotypes representing the various
nodes have to be added to the corresponding UML constructs.

Messages passing is an activity performed by almost every Node-
RED node, but in some cases the message a node returns is an
untouched or a slight changed version of the received one. Hence,
while modelling the behaviour of a system, only when needed
to improve the understandability, we have chosen to represent
messages as UML object nodes exposing their properties in the
9https://www.eclipse.org/papyrus/
10http://emfjson.org/projects/ecorejs/latest/
11http://noderedguide.com/node-red-lecture-3-basic-nodes-and-flows/

Figure 2: The proposed approach.

form of {property1: value1, . . . , propertyN: valueN}.
For example, if a function node adds a property P with value V to a
received message, the returned message will be modelled as a UML
object node labelled with {..., P:V, ...}.

We have decided to use swimlanes for representing the main
Node-RED flows of a system. Each lane corresponds exactly to a
main flow, then the placement of any UML construct representing
a Node-RED node within a certain lane determines the node scope
to the corresponding flow. In our running example of Figure 1, the
system is composed of two devices, hence it will require two lanes
representing its two main flows.

At this stage, modelling IoT systems in Node-RED can be tough,
due to the number of heterogeneous and interconnected devices
to handle and to all the technical/configuration details required by
Node-RED nodes. For this reason, our approach introduces the con-
cept of mocked portions of a system behaviour. A mocked portion
is something that the designer may not want to model yet, because
of not immediate interest or because further time for thinking is
required (in Figure 1, see step 5. Set temperature*), and then she

EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca

Figure 3: The behaviour of the running example.

mocks it with a scripted behaviour. A UML activity construct stereo-
typed by ≪mock≫ is used any time a portion of the behaviour of
a system has to be mocked.

Figure 3 provides a simplified UML activity diagram representing
the behaviour of our running example. Two lanes are used to delimit
the system components: a Temperature Setter and a Reader
Device. The system starts once the Reader Device receives an
external event, modelled as an accept event and stereotyped with
≪inject≫. The node returns a message (a UML object node) having
as payload the name of the file stream where the temperatures
are stored (the variable FILE). Then, a ≪file in≫ node modelled
as a UML action node reads the values from the file and returns
them, again as a message payload set to VALUES variable, to the
Temperature Setter through a ≪mqtt out≫ node, modelled as a
UML send signal node, and the flow ends, as shown by the UML
flow final node. The Temperature Setter receives the message
using a ≪mqtt in≫ node named accordingly and returns it to a
≪function≫ node, which updates the internal state (a flow variable
named STATE) depending on the received VALUES; no details about
the function have to be given in the activity diagram, since they will
be provided in the static view (see Figure 2). Then, a ≪switch≫
node receives the message from the function node and checks
the value of STATE, resulting in two possible activities: Handle
Same Temperature and Handle Other Temperatures. These two
activities are modelled as mocked portions of the system, as shown
by their stereotypes, which means that they are not yet intended
to be developed and will present a scripted behaviour, specified in
the static view, without blocking the execution or the testing of the
system.

From the example, it is notable that not all the UML constructs
correspond to Node-RED nodes; indeed, the constructs with neither
colours nor stereotypes are just used for modelling purposes. For

example, the UML flow final node at the end of the Reader Device
lane states when the flow ends, but has no equivalent representation
in Node-RED. Similarly, the UML merge node of the Temperature
Setter lane is used only for merging together the two alternatives
exiting from the previous UML decision node. More generally, there
is not a bijective correspondence between the UML constructs in
the activity diagram and the nodes in the Node-RED flows; in fact,
the two notations present different syntax and semantics which
clearly have to be deeply investigated. In any case, we think that
UML includes all the information needed to generate Node-RED
flows from a UML model.

3.2 Static View Modelling
This task is conducted in parallel with the “Behaviour Modelling”
task, see Figure 2, and requires the designers to model, with a UML
class diagram, the static view of the system that is intended to be
developed and tested.

More specifically, the class diagram exposes classes, named flow
classes, each one representing a lane of the activity diagram (i.e.,
the main Node-RED flows of the system). A flow class contains an
operation for each UML construct representing a Node-RED node
included in the corresponding lane. Finally, OCL notes are attached
to each flow class to define their operations, i.e., the properties
of the nodes, formulated as a conjunction of Property = Value.
The definition of the operations does not require parameters or
returned values. Indeed, most of Node-RED nodes receive messages
and return messages, sometimes changing their structures, hence
making messages passing explicit would not add any information;
instead, whenever a message has to be made explicit, it is modelled
in the activity diagram as a UML object node exposing all the
interesting properties, as shown in Figure 3.

Towards an Approach for Developing and Testing Node-RED IoT Systems EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA

Figure 4: A portion of the static view of the running example.

Our approach requires iterative steps formodelling the behaviour
and the static view of a system, see the loops in the process of Figure
2, hence the definition of some nodes properties which may result
too complex at this early stage can be postponed, for instance
those requiring technical details (e.g., the server name and the
port number of a communication node) or programming skills
(e.g., the Javascript body of a function node). A partial view of the
class diagram, defining some properties of the nodes of the activity
diagram modelled in Figure 3, is shown in Figure 4.

Since the activity diagram is composed of two lanes, correspond-
ing to the Reader Device and the Temperature Setter main
flows of the system, the class diagram presents two flow classes,
each one having an attached OCL note defining its operations. For
instance, sendValuesToSetter of the TemperatureSetter class
represents the homonym MQTT node receiving the values from
the Reader Device, hence it requires properties such as the topic
(i.e., basically, the message identifier), the broker’s server and
the broker’s port. Instead, updateStateFromValues of the same
class represents the homonym function node and has a property
named body which embodies its logics in Javascript language, i.e.,
it computes the average of the received values and compares it with
the one computed the day before, stored in a flow variable named
AVG. Depending on which average is higher, it changes a flow variable
named STATE that will be used for the next temperature setting. No-
tice also the definition of handleSameTemperature; the operation
represents the homonym mocked portion of the system and its
behaviour is defined to simply returning the message it receives,
hence doing nothing. This definition will have to be changed once
that mocked portion of the system is clearer.

3.3 Stakeholders Feedbacks
Our approach requires strong interactions between the stakeholders
and the professional figures responsible for modelling, developing
and testing the system, as shown in Figure 2. Indeed, since having
Node-RED flows aligned with the system expected behaviour is
a mandatory requirement of our approach, it is imperative that
the stakeholders can analyse the produced artefacts and provide

feedbacks. This can happen in two phases: one at the beginning
of the process (Stakeholders feedbacks (1)), when a problem
in the model is identified or a refinement of the model is needed
(e.g., update the class diagram by defining a new node property
or update the activity diagram by modifying a flow), and one at
the end of the process (Stakeholders feedbacks (2)), when a
problem in the generated Node-RED flows or in the test scripts is
identified or when a refinement of the model is needed (e.g., some
mocked portions have to be defined or a node property has to be
fixed).

3.4 Node-RED Flows Generation
Once the system has been modelled, it is possible to transform
the produced UML model into Node-RED, by generating the flows
and the nodes properties from the activity and the class diagrams,
respectively. Basically, it is a transformation from XMI (for the UML
perspective) to JSON (for the Node-RED perspective), which is in-
tended to be automated. The transformation will apply a procedure,
sketched as follows, which will require a fine-tuning after a proper
application on real case studies:

• For each lane Li in the activity diagram, generate an empty
Node-RED flow Fi ;

• For each UML construct Ck in lane Li , if Ck is stereotyped
as Sk , generate a Node-RED node Nk in flow Fi having the
form {id : nk ,name : Ck , type : Sk , z : Li ,wires : []}, where
z is the property that Node-RED uses to identify a flow;

• For each flow class FCi in the class diagram, for each opera-
tionOki , add the definition ofOki , having the formproperty1
= value1, . . . ,propertyN = valueN to node Nk in flow Fi ,
changing = with :;

• For each couple of UML constructs Cn and Cm in lane Li ,
having stereotypes Sn and Sm respectively, if there exist a
sequence of transitions from Cn to Cm such that no other
stereotyped UML construct is in the sequence, and if Sn per-
mits output wires and Sm permits input wires, then update
propertywires of node Nn in flow Fi from [. . .] to [. . . , [nm]].

EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca

Figure 5: The JSON flows and some nodes properties of the running example, as seen in Node-RED.

A possible outcome of the procedure is given in Figure 5, where
the Node-RED flows of the Reader Device and the Temperature
Setter components of the running example are generated from
the activity and the class diagrams shown in Figures 3 and 4. Notice
the mocked portions transformed into function nodes, each one
having a scripted behaviour.

3.5 Test Scenarios Selection
In our approach, the testing activity over the system is performed
in parallel with the generation of the Node-RED flows, as shown in
Figure 2. The produced activity diagram describes the complete sys-
tem behaviour, including mocked portions, therefore test scenarios
can be selected from it.

We define a test scenario as a physically or a logically connected
portion of the system behaviour, composed of different UML con-
structs. The connection between UML constructs is essential for
having a test scenario: it is physical when two UML constructs C1
and C2 are directly connected with a UML control/object flow; it is
logical when C1 and C2 logically represent a sequence of possible
events, for instance if C1 is a UML send signal node stereotyped
with ≪mqtt out≫ and C2 is a UML accept event node stereotyped
with ≪mqtt in≫.

Since a test scenario is partial it does not represent a fully work-
ing Node-RED flow, hence it may lack preceding steps where vari-
ables and message properties are set. Then, each test scenario has
to be preceded by a tailored mocked portion, responsible for setting
the used global and flow variables and the message properties. As
the name suggests, each tailored mocked portion is tailored to a
specific test scenario. For instance, we may want to check that a
component A can send a message M to a component B and, based
on the payload of M, B can execute either sub-flows S1, S2 or S3;
hence, depending on the way the payload is set by the tailored
mocked portion defined for that test scenario, one among those
three sub-flows may be exercised.

As for the mocked portions introduced while modelling the
behaviour of a system, even the tailored mocked portions of test
scenarios are represented as UML activity constructs stereotyped
with ≪mock≫, in this case preceding the first UML constructs of
the test scenarios they are associated with and placed in special
lanes (e.g., Testing lane). Moreover, each tailored mocked portion
has to be defined by adding to the class diagram used for modelling
the static view of the system a new class named as the newly
introduced lane, that will represent the tailored mocked portion
as an operation and will define it in an OCL note in the form of
behaviour = B, where B is expressed in Javascript.

Towards an Approach for Developing and Testing Node-RED IoT Systems EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA

At this stage of the work we have not yet defined a precise
strategy for selecting the best test scenarios in terms of system
coverage and the smartest way for customizing the tailored mocked
portions. We intend of course to investigate on these two topics, in
particular in inferring the variables used by test scenarios and in
generating proper input data.

3.6 Control Points Definition
To proceed in the testing activity of the system, the selected test
scenarios must be completed by adding some control points. In our
approach, a control point corresponds to any assertion formulated
using a testing framework for a specific programming language
(e.g., JUnit for Java), hence defines a check over a system property,
i.e., a global/flow variable or a message property, and is represented
as a UML action node stereotyped with ≪control point≫. The
idea of adding control points within Node-RED flows has been
inspired by some of the Node-RED nodes and frameworks having
verification purposes, e.g., the node-red-contrib-assert node
and the node-red-node-test-helper framework mentioned in
Section 1, which can be added within a Node-RED flow to intercept
the information passed among the observed nodes.

Each control point attached to a test scenario has to be added to
the same lane of the tailored mocked portion for that test scenario
and is definition is given in an OCL note attached to the class in
the class diagram corresponding to that lane, in the form of check
= C, where C is expressed in Javascript.

We still have to think about all the possible checks to be defined
by control points, but theoretically they could be formulated relying
on the plethora of libraries and modules running in Javascript and
NodeJS (e.g., Should12, Chai13, Assert14). Examples of checks using
the Should library are var.should.be.equal(V), where var is a
global/flow variable or amessage property and V is a primitive value,
or msg.should.have.property(P, V), where P is the name of a
property that a message msg should have and V is a primitive value.
More complex checks over system properties will be investigated,
e.g., checks over the time taken by a communication, comparisons
of the output produced by multiple executions of the same test
scenario, and so on.

Figure 6 shows, on top, a test scenario selected from the system
behaviour modelled in Figure 3. Since the test scenario focuses on
just a portion of the Temperature Setter lane, a tailored mocked
portion named Mock Reader Device is introduced at the beginning
of the test scenario and added to a new lane named Testing. The
test scenario ends after the function node, ignoring what happens
next, therefore a control point is attached to the transition exit-
ing from it. On the bottom of Figure 6, the class representing the
Testing lane is shown, including the note defining both the tailored
mocked portion and the control point. The tailored mocked portion
is defined by feeding the test scenario with a message payload of
three temperatures (27.5, 26, and 24.5), to simulate the values the
Reader Device reads from the file stream, and by setting a flow
variable named AVG to 22. This means that the average temperature
computed by the function node of the Temperature Setter (see

12https://shouldjs.github.io/
13http://www.chaijs.com/api/assert/
14https://nodejs.org/api/assert.html

Figure 6: A test scenario (top) and the definition of the tai-
loredmocked portion and control point (bottom) of the run-
ning example.

its definition in Figures 4 and 5) over the three received values is 26,
slightly higher than the one computed the day before and stored in
AVG, hence the value of the STATE variable after the function should
be equal to Warmer Temperature, as required in the definition of
the control point named check STATE.

3.7 Mocha Test Scripts Generation
Once the control points are introduced in a test scenario and con-
sequently defined, it is possible to generate the corresponding test
script, relying on the Mocha test framework. The generation of the
test scripts is intended to be automatically conducted by a tool that
will apply the following sketched procedure. Given a test scenario
TS :

• Generate an empty Mocha test scriptMTS ;
• Generate the JSON flow F from TS and declare it inMTS ;
• Extract the unique stereotypes S representing the Node-RED
nodes from TS and declare them inMTS . This step relies on
the require NodeJS built-in function to load modules;

• Add a function LF to load F inMTS ;
• Find the tailored mocked portion from F and declare it in
LF ;

• Find the control pointsCP1, ...,CPN from F and declare them
in LF ;

• For each control point CPi , add a check instruction CIi in
LF ;

• Add the instruction to start F at the end of LF .
A simplified test script generated by the aforementioned pro-

cedure which corresponds to the test scenario shown in Figure 6
should look like the following:

EnSEmble ’18, November 4, 2018, Lake Buena Vista, FL, USA Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca

1 var helper = require("node -red -node -test -helper");
2 var mqttInNode = require("./ node_modules/node -red/

nodes/core/io/10-mqtt.js");
3 var functionNode = require("./ node_modules/node -red/

nodes/core/core/80- function.js");
4 it("Test Scenario 1", function(done) {
5 var flow = [
6 {id: "n0", name: "Mock Reader Device", type: "

function", func:"msg.payload = {27.5, 26, 24.5};
flow.set('AVG ', 22); return msg;", ..., wires :[["
n1"]]},

7 {id: "n1", name: "send VALUES to Setter", type: "mqtt
in", ..., wires :[["n2"]]},

8 {id: "n2", name: "update STATE from VALUES", type: "
function", ..., wires :[["n3"]]},

9 {id: "n3", name: "check STATE", ..., type: "helper"}
10];
11 var nodesTypes = [functionNode , mqttInNode];
12 helper.load(nodesTypes , flow , function () {
13 var mock = helper.getNode("n0");
14 var cp = helper.getNode("n3");
15 cp.on("input", function(msg){
16 cp.context ().flow.get("STATE").should.be.equal("

Warmer Temperature");
17 done();
18 });
19 mock.receive ();
20 });
21 });

Lines 1-3 are built-in functions referencing the nodes that appear
in the flow. The function it (line 4) represents a test script in the
Mocha environment. Inside the test script, there are the declarations
of the flow (lines 5-10) and of the nodes types included in the flow
(line 11); some properties have been hidden for space purpose (refer
to Figure 4 for a better understanding). Notice the presence of the
tailored mocked portion at the beginning of the flow (line 6) and of
the control point at the end (line 9); in particular, the control point is
of type helper from the node-red-node-test-helper framework,
since for our testing purposes it provides a useful interface for
easily recovering information from flows and nodes. Once the flow
is loaded (line 12), both the tailored mocked portion and the control
point are extracted from it by using their identifiers (lines 13-14),
then the control point waits for input events from the function node
(line 15) and checks the value of the flow variable STATE (line 16), as
defined in Figure 6. Finally, the last instruction (line 19) determines
the starting of the flow, by means of the tailored mocked portion
simulating the reception of a message to be returned to the next
node.

We intend to investigate more deeply the procedure for gener-
ating Mocha test scripts, in particular in the complex cases which
may involve a larger number of flows and different nodes.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a preliminary version of an ap-
proach for developing and testing IoT systems in Node-RED. First,
the behaviour of the system and the static view are modelled using
UML activity and class diagrams, to describe the logics of the sys-
tem, in terms of nodes and flows, and the main properties of the
nodes. Then, from the model is possible to generate the executable
Node-RED flows implementing the system and to perform an itera-
tive testing activity aimed at: 1) selecting a set of test scenarios from

the model, 2) defining some control points within the selected test
scenarios to check over the system properties, and 3) generating
the corresponding Javascript test scripts to exercise the selected
test scenarios in the Mocha test framework.

In the next future, we intend to: 1) investigate the differences
between UML and Node-RED and propose sound guidelines and
constraints to support the production of understandable and of high
qualitymodels, 2) extend the amount of supported Node-RED nodes,
and 3) improve the testing activity with a strategy for selecting
effective test scenarios, for generating smart input data tailored for
the test scenarios, and for formulating more complex control points.
We will implement a tool supporting the tasks of the approach that
are intended to be automated (i.e., the generations of the Node-
RED flows and the test scripts) and we will evaluate the approach
on realistic case studies and compare it against other approaches
existing in literature.

REFERENCES
[1] Miroslav Bures, Tomás Cerný, and Bestoun S. Ahmed. 2018. Internet of Things:

Current Challenges in the Quality Assurance and Testing Methods. CoRR ab-
s/1805.01241 (2018). arXiv:1805.01241 http://arxiv.org/abs/1805.01241

[2] Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca. 2017. Towards
the Generation of End-to-EndWeb Test Scripts from Requirements Specifications.
In Proceedings of 25th IEEE International Requirements Engineering Conference
Workshops (REW 2017). IEEE, 343–350. https://doi.org/10.1109/REW.2017.39

[3] Aaron Kane, Thomas Fuhrman, and Philip Koopman. 2014. Monitor based oracles
for Cyber-Physical System testing: Practical experience report. In Proceedings of
44th Annual International Conference on Dependable Systems and Networks (DSN
2014). IEEE, 148–155.

[4] Hiun Kim, Abbas Ahmad, Jaeyoung Hwang, Hamza Baqa, Franck Le Gall, Miguel
Angel Reina Ortega, and JaeSeung Song. 2018. IoT-TaaS: Towards a prospective
IoT testing framework. IEEE Access 6 (2018), 15480–15493.

[5] Maurizio Leotta, Davide Ancona, Luca Franceschini, Dario Olianas, Marina Rib-
audo, and Filippo Ricca. 2018. Towards a Runtime Verification Approach for
Internet of Things Systems. In Proceedings of 2nd International Workshop on
Engineering the Web of Things (EnWoT 2018). Springer.

[6] Maurizio Leotta, Diego Clerissi, Dario Olianas, Filippo Ricca, Davide Ancona,
Giorgio Delzanno, Luca Franceschini, and Marina Ribaudo. 2018. An Acceptance
Testing Approach for Internet of Things Systems. IET Software (2018). https:
//doi.org/10.1049/iet-sen.2017.0344

[7] J Paul Morrison. 2010. Flow-Based Programming: A new approach to application
development. CreateSpace.

[8] Gianna Reggio. 2018. A UML-based Proposal for IoT System Requirements Spec-
ification. In Proceedings of 10th International Workshop on Modelling in Software
Engineering (MiSE 2018). ACM, 9–16. https://doi.org/10.1145/3193954.3193956

[9] Gianna Reggio, Maurizio Leotta, Diego Clerissi, and Filippo Ricca. 2017. Service-
oriented Domain and Business Process Modelling. In Proceedings of 32nd ACM/SI-
GAPP Symposium on Applied Computing (SAC 2017). ACM, 751–758. https:
//doi.org/10.1145/3019612.3019621

[10] Gianna Reggio, Maurizio Leotta, and Filippo Ricca. 2014. Who Knows/Uses
What of the UML: A Personal Opinion Survey. In Proceedings of 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), Juergen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfran (Eds.). LNCS, Vol. 8767. Springer, 149–165. https://doi.org/10.
1007/978-3-319-11653-2_10

[11] Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Diego Clerissi. 2015. What
Are the Used UML Diagram Constructs? A Document and Tool Analysis Study
covering Activity and Use Case Diagrams. In Model-Driven Engineering and
Software Development, Slimane Hammoudi, Ferreira Luís Pires, Joaquim Filipe,
and César Rui das Neves (Eds.). Communications in Computer and Information
Science, Vol. 506. Springer, 66–83. https://doi.org/10.1007/978-3-319-25156-1_5

[12] Maria Spichkova, Anna Zamansky, and Eitan Farchi. 2015. Towards a human-
centred approach in modelling and testing of cyber-physical systems. In Pro-
ceedings of 21st IEEE International Conference on Parallel and Distributed Systems
(ICPADS 2015). IEEE, 847–851.

