
Copyright:

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Fluent vs Basic Assertions in Java: An Empirical Study

Maurizio Leotta, Maura Cerioli, Dario Olianas, Filippo Ricca

Abstract:

Context. Tests are becoming more and more central to the development process, so that their

comprehensibility is of paramount importance. In particular, assertions, which express the

test expected results, must be immediately understandable. Thus, recently several libraries

emerged for making assertions “fluent”, i.e., more comprehensible and easy to develop.

However, there is no empirical evidence for the claimed advantages and benefits, that could

convince SQA Managers and Testers for their adoption.

Objective. The aim of this work is gauging one of the claimed benefits of fluent assertions,

namely improvement in comprehensibility, with respect to basic assertions.

Method. We conducted a controlled experiment involving 51 Bachelor students. AssertJ – a

library supporting fluent assertions – is compared with JUnit Basic assertions, in a test

comprehension scenario. We analysed the level of comprehension of the assertions, the time

required to answer questions, and the overall efficiency in completing the assignments.

Results. The results show that adopting AssertJ has no significant effect on the level of

comprehension of the assertions, though it significantly reduces the time required to

understand assertions, so that it significantly improves the overall efficiency during

comprehension of assertions.

Conclusions. From our study it emerges that fluent assertions are a better choice though they

do not provide the expected improvements on understandability. Indeed they could be

significantly improved by choosing methods names that better capture the assertion intended

meaning.

Digital Object Identifier (DOI):

https://doi.org/10.1109/QUATIC.2018.00036

Fluent vs Basic Assertions in Java: An Empirical
Study

Maurizio Leotta, Maura Cerioli, Dario Olianas, Filippo Ricca
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy

maurizio.leotta@unige.it, maura.cerioli@unige.it, S3717893@studenti.unige.it, filippo.ricca@unige.it

Abstract—Context. Tests are becoming more and more central
to the development process, so that their comprehensibility is of
paramount importance. In particular, assertions, which express
the test expected results, must be immediately understandable.
Thus, recently several libraries emerged for making assertions
“fluent”, i.e., more comprehensible and easy to develop. However,
there is no empirical evidence for the claimed advantages and
benefits, that could convince SQA Managers and Testers for their
adoption.

Objective. The aim of this work is gauging one of the claimed
benefits of fluent assertions, namely improvement in comprehen-
sibility, with respect to basic assertions.

Method. We conducted a controlled experiment involving
51 Bachelor students. AssertJ – a library supporting fluent
assertions – is compared with JUnit Basic assertions, in a test
comprehension scenario. We analysed the level of comprehension
of the assertions, the time required to answer questions, and the
overall efficiency in completing the assignments.

Results. The results show that adopting AssertJ has no sig-
nificant effect on the level of comprehension of the assertions,
though it significantly reduces the time required to understand
assertions, so that it significantly improves the overall efficiency
during comprehension of assertions.

Conclusions. From our study it emerges that fluent assertions
are a better choice though they do not provide the expected
improvements on understandability. Indeed they could be signifi-
cantly improved by choosing methods names that better capture
the assertion intended meaning.

Index Terms—Testing, Controlled experiment, JUnit, AssertJ

I. INTRODUCTION

Software testing is becoming more and more central to the
development process. Nowadays, tests are of vital importance;
not only they are used to ensure the quality of the software
before deployment but they often drive the development and
design (Test driven Development [4] and Behaviour driven
development [20]), integrate or altogether replace software
specifications [3], [14] and are a means of documentation [12].
In particular, agile software development methods, such as for
example Extreme Programming, advocate the use of tests as a
form of documentation [11]. The best way to learn what the
code is supposed to do is to read and understand the tests.

Among the different types of testing, unit testing is used to
validate that each unit of the software (a class or a method
in the context of object-oriented programming) performs as
designed. Usually, unit tests are automatically executed throw
xUnit testing frameworks (e.g., JUnit for Java), which run
the test method(s), and present the users with a report of
successes/failures. The expected result is described by an

assertion, which is a method verifying that some value (the
result of the call under test, or the final status of some part of
the system) complies with a given condition, and raising an
exception in case of failure.

Since unit tests can be considered as a form of “living”
documentation, which can be executed when one wants to
understand the system functionalities, their readability and
understandability is of paramount importance. Thus, in par-
ticular, assertions must be easy to grasp without any possible
misunderstanding.

Each programming language and every testing framework
has its own (often interchangeable) assertion libraries, which
help testers to implement different styles of assertions in an easy
way. Recently, several libraries emerged for making assertions
“fluent”, with the goal of improving test code readability and
making production and maintenance of tests easier. One of the
distinctive features of fluent assertions is the simple intuitive
syntax able to structure the assertions as English sentences
written in dot notation.

However, there is only anecdotal evidence about the superi-
ority of fluent style over classic assertions [2], [6], [9]. Thus,
without any scientific support, and no empirical evidence for
the claimed advantages and benefits, it is difficult to convince
SQA Managers and Testers to adopt them.

Since we are interested in investigating the claimed advan-
tages and benefits of the fluent style, we decided to apply
Evidence-Based Software Engineering [10] to this context. In
particular, as a first step in this direction, we conducted a
controlled experiment [19] involving 51 Bachelor students to
compare fluent assertions against classic ones, the baseline, in
a test comprehension scenario. Other styles of assertions will
be considered in future experiments.

The paper is organised as follows: Section II describes Fluent
and Basic assertions and the concrete implementations used
in this study: AssertJ and JUnit Basic. The description of the
empirical study and the preliminary results are in Section III
and IV respectively. Finally, related works are discussed in
Section V while conclusions are given in Section VI.

II. FLUENT AND STANDARD JUNIT ASSERTIONS

As a reference testing framework for our experiment, we
selected JUnit1, the leading unit test framework for Java
programming [16]. Its most recent version, JUnit 5, supports

1https://junit.org

a few libraries for assertions, and has an open extensible
architecture ready to include others. Tests written using previous
versions (3 and 4) of JUnit can still be run as they are through
the Vintage test engine2; but an improved version of the standard
library, called Jupiter, is provided as well. As instance for
Basic assertions, in our experiment we use a small subset of
assertions, compliant with both Jupiter and older versions of
JUnit. The entry point is one class, providing many assertion
methods. The simplest ones have just one parameter (besides an
optional string for error messages), the object to be checked; for
instance assertNull(o), stating that the object o is expected
to be null, or assertTrue(b), stating that some boolean
expression b should hold. Other common assertion methods
have two parameters (again, besides an optional error message)
and compare them; for instance if a1 and a2 are arrays, then
assertArrayEquals(a1,a2) states that the expected value
a1 is the same as the actual value a2 computed by the call
under test. Since the provided methods can only cover a small
amount of cases, quite often the testers need to write a few
lines of code to express complex assertions, or use non-trivial
expressions as arguments of some given assertion method.

For instance, to assert that at least one element of the
Array toSearch appears in the Array target (see question
Obj1* Q3 of our experiment) we have the following code,
with nested loops to compare elements pairwise, and find a
match, if any.

boolean match = false;
for(String r : toSearch) {
for(String e : target) {

if(e.equals(r)) {
match=true;
break;

}
}
if(match) break;

}
assertTrue(match);

In this case the assertion itself has a trivial form, but some
non-trivial code is needed to correctly initialize its argument.
In other cases, vice versa, there is no need for extra lines of
code, but the assertion statement is more complex. For instance
in question Obj2* Q8 of our experiment, we use

assertTrue((Math.abs(n-10) <= 3) &&
(Math.abs(n-6) < 3));

to state that both |n − 10| ≤ 3 and |n − 6| < 3. Sometimes
both techniques are needed in combination.

The main problem of JUnit Basic assertions is that the
available assertion methods are just a handful. Indeed, the
limited choice of assertion methods makes the usage of
assertTrue way too widespread, with complex expressions as
argument, or using variables as arguments and non-trivial code
to initialize them. This approach leads to assertions difficult to
write/read, and moreover in case of failure the error message
is not helpful, because it only says that the evaluation of the

2https://junit.org/junit5/docs/current/user-guide/#dependency-metadata-junit-
vintage

expression is false, while true was expected. On the other
hand, introducing a plethora of assertion methods, to cover as
many common uses as possible, is not feasible, as the users
should memorize all of them, to be able to select the needed
one.

Struggling with these problems, a few groups have proposed
alternative assertion libraries in the last ten-fifteen years. One
of them, Hamcrest3, has been included in standard JUnit 4
since 2007 (see [1]), while JUnit 5 encourages its users to adopt
whatever library they prefer to write complex tests, suggesting
Hamcrest, AssertJ4 and Truth5, as sponsored options. The
latter two libraries are quite similar, being both forks of a
common ancestor, Fest6. As instance of fluent assertions, in
our experiment we use AssertJ, but, given the similarity of the
two libraries for the simple examples we used, most probably
we would get the same results using Truth.

Fluent assertions, like those provided by AssertJ and
Truth, are based on a different approach w.r.t. basic
built-in ones: they are based on the existence of many
overloading of an assertThat method, any of which
takes a unique parameter, the actual value to be tested.
The result of assertThat(T actual) is an object of a
class providing methods to express conditions on values of
type T. For instance, if d is a date, then assertThat(d)

has type AbstractDateAssert, with methods like
hasSameTimeAs(Date date), or isAfter(Date other).

Thus, on the one hand asserting a condition is very easy: the
tester just has to write assertThat(_). and, at the hitting
of the dot, the IDE suggests all possible conditions for the
given type. Thus, there is no burden of remembering the correct
method to use. Moreover, as the assertion methods are clustered
by the type of the actual value to be tested, their number for
each given type is manageable (though the overall collection is
impressively large and hence expressive), and static correctness
reduces the risk of errors.

On the other hand, choosing apt names for the assertion
methods allows writing assertions which resemble English
sentences, hence the fluent name. Consider for instance
the following examples, taken respectively from questions
Obj1+ Q3 and Obj1+ Q9 of our experiment:

assertThat(target).containsAnyOf(toSearch};

and
assertThat(date1)

.isEqualToIgnoringHours(date2);

Finally, since the result type of assertion methods is again
a class of assertions in AssertJ7, assertions can be naturally
chained. For instance in question Obj2+ Q16 of our experiment
we have three assertions on the same map:

3http://hamcrest.org/,
4https://joel-costigliola.github.io/assertj/,
5https://google.github.io/truth/,
6https://mvnrepository.com/artifact/org.easytesting/fest-assert,
7In Truth this feature is not available, while both library support a further

chaining capability, that is, selectors for the type on which the assertion
works lift to the assertion class, so that it is possible to write something like
assertThat(list).last().isEqualTo(x)

assertThat(gameParticipants)
.containsOnlyKeys(Color.BLUE,

Color.BLACK, Color.RED)
.doesNotContainKey(Color.WHITE)
.doesNotContainEntry(Color.RED, "micheal");

III. EXPERIMENT DEFINITION, DESIGN AND SETTINGS

We conceived and designed the experiment following the
guidelines by Wohlin et al. [19]. Table I summarizes the
main elements of the experiment. For replication purposes,
the experimental package has been made available8.

Goal Evaluate the effect of adopting AssertJ fluent
assertions during test code comprehension tasks

Quality focus
(i) Comprehension of the assertions
(ii) Time
(iii) Efficiency

Context
Objects: two collections of Assertions

(Obj1, Obj2)
Subjects: 51 BSc students

Null (i) No effect on comprehension

hypotheses (ii) No effect on time
(iii) No effect on efficiency

Treatments AssertJ (Fluent) and Built-in (Basic) Assertions
in JUnit

Dependent
variables

(i) TotalComprehension of the provided asser-
tions
(ii) TotalTime required to answer the questions
(iii) TotalEfficiency in completing the assign-
ments

TABLE I. Overview of the Experiment

The goal of the study is analysing the effects of adopting
AssertJ “fluent” assertions rather than conventional JUnit “basic”
ones during tasks requiring test code comprehension, like, for
instance, test execution (e.g., understanding why a test case
fails), as well as, maintenance or debugging (e.g., understanding
how to update and correct a test case).

The perspective is of SQA Managers and Testers interested
in evaluating different ways to express assertions in terms of
(1) comprehension of the assertions and (2) time required for
understanding them. The context of the experiment consists of
two collections of assertions (respectively Obj1 and Obj2, i.e.,
the objects) and of subjects, 51 Computer Science BSc students.
In what follows, we present in detail: treatments, objects,
subjects, design, hypotheses, variables and other aspects of the
experiment.

A. Treatment

Our experiment has one independent variable (main factor)
and two treatments: “*” (JUnit Basic) or “+” (AssertJ). In the
first case, the comprehensions tasks are performed on JUnit
Basic assertions, while in the second case on AssertJ ones.

8http://sepl.dibris.unige.it/FluentVsClassic.php

B. Objects

The objects of the study are two collections of assertions:
Obj1 and Obj2. The two objects have been created by defining
an overall list of 20 assertions in which those in odd positions
have the same level of complexity as those in the next even
position. Then the 10 odd assertions (1,3,5,...) have been
assigned to Obj1 while the 10 even ones (2,4,6,...) to Obj2.
Thus, the two objects are comparable in complexity and size,
because they consist of equivalent collections of assertions on
arrays, maps, lists, and dates. The AssertJ assertions have been
created by analysing the ones shown in the AssertJ library
documentation. Thus, they are all simple, but not too simple;
indeed, for trivial assertions the basic library is already good
enough, and it would difficult to compare the results. Then, we
developed equivalent assertions using the JUnit Basic library.
Both treatments have been carefully inspected and executed,
including them in executable test scripts, in order to guarantee
their correctness.

C. Subjects

The experiment was conducted in a research laboratory under
controlled conditions (i.e., online). Subjects were 51 students
from the Software Engineering course, in their last year of
the BSc degree in Computer Science at the University of
Genova (Italy). They had an average programming knowledge
(specifically, of Java and C# programming). Participants had, in
previous years of their career, mandatory exams for the courses:
Programming I and II, Algorithms and Data Structures, Object
Oriented Programming, Data Bases and Advanced Object Ori-
ented Programming. Automated testing was explained during
the Software Engineering course (i.e., the course in which
the experiment was conducted), where detailed explanations
on AssertJ and JUnit Basic assertions were provided. The
experiment was introduced as a supplementary laboratory
assignment. Before it, the students participated in five labs about
software engineering including one about unit test automation
using both AssertJ and JUnit Basic assertions.
Before the experiment, all the subjects have been (re-)trained on
AssertJ and JUnit Basic assertions with a one hour presentation
including sample questions and answers like the ones used in
the experiment.

D. Experiment Design

The experiment adopts a counterbalanced design planned to
fit two Lab sessions (see Table II). Subjects were split into four
groups balancing as much as possible their ability/experience,
as ascertained by a previous software engineering lab on
development of automated unit tests using the JUnit framework
(including both JUnit Basic and AssertJ assertions).

Each subject worked in Lab 1 on an object with a treatment
and in Lab 2 on the other object with the other treatment.
We choose a design ensuring that each subject works on
different objects in the two Labs, receiving each time a different
treatment; this is the best choice when a limited number
of participants is available. Indeed, it is well-known that a

Group A Group B Group C Group D

Lab 1 Obj1 + Obj1 * Obj2 * Obj2 +

Lab 2 Obj2 * Obj2 + Obj1 + Obj1 *

TABLE II. Experimental Design (* = JUnit Basic, + = AssertJ)

counterbalanced design limits as much as possible learning
effects [13].

E. Dependent Variables and Hypothesis Formulation

Our experiment has three dependent variables, on which
treatments are compared measuring three different constructs:
(i) Comprehension of the assertions, (ii) Time required to answer
questions, and (iii) Efficiency in completing the assignments.
Each construct is measured with a variable (respectively
TotalComprehension, TotalTime, and TotalEfficiency) for which
we defined the relative metric (as done in [15]).

The comprehension of each assertion was assessed by
computing Precision, Recall and the corresponding F-Measure.
TotalComprehension variable was computed by summing up
the 10 values for each subject. Thus, the TotalComprehension
variable ranges from zero to ten, where ten corresponds to a
perfect precision and recall on all 10 questions.

Time was measured by means of time sheets. Students
recorded starting time for each question and stopping time
of the overall questionnaire. In this way, we were able to
compute the time required to answer the questions (the
TotalTime variable), as difference between the ending time
of the questionnaire and the starting time of the first question.

The efficiency is a derived measure that is computed as the
ratio between overall assertions comprehension and time to
answer the ten questions (more is better).

TotalEfficiency =
TotalComprehension

TotalTime
(1)

Thus, we can state the null hypotheses for the study in this
way:
– H0a: TotalComprehension (AssertJ) = TotalComprehension

(JUnit Basic)
– H0b: TotalTime (AssertJ) = TotalTime (JUnit Basic)
– H0c: TotalEfficiency (AssertJ) = TotalEfficiency (JUnit Basic)
Since we could not find any previous empirical evidence that
points out a clear advantage of one approach vs. the other, we
formulated H0a, H0b, and H0c as non-directional hypotheses.
The objective of a statistical analysis is to reject the null
hypotheses above, so accepting the corresponding alternative
ones: H1a, H1b, and H1c.

F. Material, Procedure and Execution

To assess the experimental material and to get an estimate of
the time needed to accomplish the tasks, a pilot experiment with
one BSc student in Computer Science at University of Genova
was accomplished. The student finished the assignment in 26

and 32 minutes for AssertJ and JUnit Basic respectively and
gave us some information on how improving the experimental
material.

The experiment took place in a laboratory room and was
carried on using paper-based questionnaires. First, students
completed the training session. Then, they participated into
two laboratory sessions (Lab 1 and Lab 2), with a short break
between them. Finally, students were asked to compile a post
experiment questionnaire.

For each group (see Table II), the questionnaire contained 10
questions, each consisting of an assertion expressed in AssertJ
or JUnit Basic and five possible answers (out of which only one
or two correct), and the subjects had 40 minutes to complete
it.

For each Lab session, the experiment execution steps were
as follows:

1) We delivered the sheet containing the questionnaire to
each subject.

2) Subjects filled their personal data in the delivered sheet.
3) For each question:

a) Subjects recorded the starting time.
b) Subjects answered the question (possibly accessing the

online documentation).
3) Subjects recorded the questionnaire ending time.

Finally, subjects were asked to complete a post-experiment
questionnaire aimed at both gaining insights about the students’
behaviour during the experiment, and finding motivations for
the quantitative results. It included questions about: availability
of sufficient time to complete the questions, documentation
clarity, exercise usefulness, perceived comprehensibility of the
provided assertions, willingness to adopt AssertJ assertions
in some future real-world projects, competencies required
to answer. The post-experiment questionnaire is outlined in
Table IV. Answers are on a Likert scale ranging from one
(strongly agree) to five (strongly disagree).

G. Analysis Procedure

Because of the sample size and mostly non-normality of the
data (measured with the Shapiro–Wilk test [17]), we adopted
non-parametric test to check the three null hypotheses. This
choice is in accordance with the suggestions given in [13,
Chapter 37]. Since subjects answered to the questions of two
different objects with the two possible treatments (i.e., AssertJ
and JUnit Basic), we used a paired Wilcoxon test to compare
the effects of the two treatments on each subject.

While the statistical tests allow checking the presence of
significant differences, they do not provide any information
about the magnitude of such a difference. Therefore, we used
the non-parametric Cliff’s delta (d) effect size [8]. The effect
size is considered small for 0.148 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474.

In all the performed statistical tests, we decided, as it is
customary, to accept a probability of 5% of committing Type-I-
error [19], i.e., rejecting the null hypothesis when it is actually
true.

Dependent Variable Subjects
AssertJ JUnit Basic

p-value Cliff’s Delta
Median Mean SD Median Mean SD

TotalComprehension 51 9.00 8.85 0.92 8.50 8.43 1.21 0.086 + 0.197 (S)

TotalTime 51 18.00 18.63 6.04 24.00 24.61 7.55 <0.001 – 0.468 (M)

TotalEfficiency 51 0.52 0.53 0.18 0.35 0.39 0.17 <0.001 + 0.489 (L)

TABLE III. Descriptive Statistics per Treatment and Results of paired Wilcoxon test

IV. PRELIMINARY RESULTS

This section starts with a short description of the results
from the experiment, analysing the effect of the main factor on
the dependent variables. Then, it discusses some results from
the post-experiment questionnaires.

Table III summarizes the essential descriptive statistics (i.e.,
median, mean, and standard deviation) of Comprehension, Time,
and Efficiency, and the results of paired statistical analyses
conducted on data from the experiment with respect to these
dependent variables.

A. H0a: Comprehension

Fig. 1 summarizes the distribution of TotalComprehension
by means of boxplots. Observations are grouped by treatment
(AssertJ or JUnit Basic). The y-axis represents the average com-
prehension measured with the F-measure on the 10 questions:
score = 10 represents the maximum value of comprehension and
corresponds to provide correct answers to all the 10 questions.
The boxplots show that the subjects achieved a slightly better
correctness level when accomplishing the tasks with AssertJ
(median 9.00) with respect to JUnit Basic (median 8.50).

By applying a Wilcoxon test (paired analysis), we found that
the difference in terms of comprehension is not statistically
significant, as p-value=0.086. The effect size is small d=0.197.
Therefore, we cannot reject the null hypothesis H0a.

Summary: The adoption of AssertJ has no significant effect
on the level of comprehension of the assertions.

B. H0b: Time

The second hypothesis can be easily tested by looking at the
time needed to answer all the ten questions. Fig. 2 summarizes
the distribution of the TotalTime variable by means of boxplots,
and the y-axis represents the total time to answer the 10
questions. The boxplots show that using JUnit Basic assertions
students needed more time than using AssertJ to answer the 10
questions (24 vs 18 minutes respectively in the median case).

To test the second hypothesis, we used a Wilcoxon test
(paired analysis) as done for the first hypothesis. The results
show that the overall difference is statistically significant, as
p-value<0.001. The effect size is medium d=–0.468.

Overall, we can reject the second null hypothesis H0b.

Summary: The adoption of AssertJ significantly reduces
the time required to understand assertions.

Fig. 1. Boxplots of Comprehension

Fig. 2. Boxplots of Time

C. H0c: Efficiency

Figure 3 summarizes the distribution of the TotalEfficiency
variable by means of boxplots. As for the previous cases,
observations are grouped by treatment (AssertJ and JUnit
Basic).

The boxplots in Fig. 3 show that students working with
AssertJ assertions outperformed in terms of efficiency students
using JUnit Basic ones (median 0.52 vs 0.35 respectively).
The difference is statistically significant since the Wilcoxon
test provides p-value<0.001. The effect size is large d=0.489.
Therefore, we can reject the null hypothesis H0c.

Fig. 3. Boxplots of Efficiency

Summary: The adoption of AssertJ significantly increases
the overall efficiency during comprehension of assertions.

D. Post-Experiment Questionnaire

The post-experiment questionnaire is summarized in Ta-
ble IV, together with the medians of the answers given by the
students. The possible choices for each answer, on a 5-point
Likert scale, were: Strongly Agree, Agree, Unsure, Disagree,
Strongly Disagree.

Students perceived the time allowed to answer the questions
to be sufficient both in the case of AssertJ (strong agree)
and JUnit Basic (agree). They found the AssertJ assertions
immediate to comprehend, but they also perceived the JUnit
Basic ones as quite simple to understand. Concerning the
documentation, students found it useful and clear (PQ5), and
they found the exercise useful, in the context of their current
courses (PQ6). Students in both lab sessions found questions
concerning AssertJ assertions simpler to answer than those on

ID Question Median

PQ1 I had enough time to answer AssertJ questions Strongly
Agree

PQ2 I had enough time to answer JUnit Basic
questions

Agree

PQ3
I had no problems to understand the provided
AssertJ assertions

Strongly
Agree

PQ4
I had no problems to understand the provided
JUnit Basic assertions Agree

PQ5
The provided documentation was useful and
clear Agree

PQ6 I found the exercise useful Agree

PQ7
Answer AssertJ questions is simpler than an-
swer JUnit Basic ones

Agree

PQ8 I would adopt AssertJ in an industrial project Agree

PQ9 I had enough knowledge to answer the questions Agree

TABLE IV. Post-experiment Questionnaire and Medians of the Answers

JUnit Basic (PQ7). Students would use the AssertJ assertions
in an industrial project (PQ8) and perceived AssertJ assertions
to be suitable for people with their level of knowledge (PQ9).

For a more complete picture, Figure 4 graphically shows the
distribution of the answers to the post-experiment questionnaire
by means of a bar chart.

0%

25%

50%

75%

100%

PQ1 PQ2 PQ3 PQ4 PQ5 PQ6 PQ7 PQ8 PQ9

Strongly Agree Agree Unsure Disagree Strongly Disagree

Fig. 4. Distributions of the Answers to the Post-experiment Questionnaire

E. Discussion

Overall, hypothesis H0b and H0c concerning respectively
the time and efficiency can be rejected. On the contrary,
hypothesis H0a concerning comprehension cannot be rejected
even if, considering the medians, the direction is in favour
of AssertJ w.r.t. JUnit Basic (9.00 vs 8.50 respectively, see
Table III). Therefore, we can infer that AssertJ reduces the
time required for a tester to understand the provided assertions
without affecting the comprehension level. We postulate that
this improvement derives from the higher level of abstraction

Obj1
Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19

+ AssertJ 0.77 0.91 0.97 1 0.77 0.97 0.92 0.9 1 0.99

* JUnit Basic 0.65 0.88 0.9 1 0.98 1 0.62 1 1 1

gap 0.11 0.04 0.07 0 -0.21 -0.03 0.30 -0.10 0 -0.01

Obj2
Q2 Q4 Q6 Q8 Q10 Q12 Q14 Q16 Q18 Q20

+ AssertJ 0.75 1 0.85 0.8 0.71 0.63 0.93 0.91 0.97 0.94

* JUnit Basic 0.69 1 0.78 0.94 0.95 0.41 0.81 0.78 0.95 0.59

gap 0.06 0 0.07 -0.14 -0.24 0.22 0.12 0.13 0.02 0.34

TABLE V. F-measures of AssertJ and JUnit Basic for the individual questions.

of AssertJ, whose assertions provide in a more compact and
less scattered way the same information given in the JUnit
Basic case by extra code, or more complex arguments. These
quantitative results are in accordance with the qualitative
impression of the students (see PQ1-4 and PQ7 in Table IV),
and with the opinion that AssertJ assertions are easier to read,
largely diffused in the practitioners’ community9.

However, the practitioners’ and students’ expectation that
AssertJ assertions are consistently more understandable is not
supported by our results on hypothesis H0a. To investigate
the reasons for this misperception, in Table V we compare
the F-measures of AssertJ and JUnit Basic for the individual
questions. The gap is the difference between AssertJ and JUnit
Basic F-measures; we emphasize gaps in bold when their
absolute value is greater than 0.2.

Since the mean of TotalComprehension for JUnit Basic
is 8.43, with a standard deviation of 1.21 (see Table III),
its results are quite good and there is a small margin of
improvement. Thus, for AssertJ to succeed over JUnit Basic,
it should have performed better on many questions. Instead,
out of 20 questions (see Table V), AssertJ has better results
only in 11 (gap positive), barely more than half, while JUnit
Basic wins on 6 (gap negative). Thus, let us briefly discuss the
questions where JUnit Basic significantly out-performs AssertJ,
that is, questions Q9 in Obj1, and Q10 in Obj2.

Let’s compare the assertions in the case of question Q9:

assertThat(date1) // Obj1+ Q9
.isEqualToIgnoringHours(date2);

assertTrue (// Obj1* Q9
date1.getDay() == date2.getDay()
&& date1.getMonth() == date2.getMonth()
&& date1.getYear() == date2.getYear());

Analysing the wrong answers, the problem seems to be
in the choice of name for the assertion method. Indeed,

9See e.g. http://www.vogella.com/tutorials/AssertJ/article.html,
https://dzone.com/articles/writing-tests-like-a-novelist,
https://allegro.tech/2014/10/java-testing-toolbox.html,
https://professional-practical-programmer.com/2016/06/26/assert-j/

isEqualToIgnoringHours has been interpreted by some
responders as “the dates may have different hours, but must
have the same minutes and seconds” while the real meaning
is that actual and given dates have same year, month and day
fields (while hour, minute, second and nanosecond fields are
ignored in comparison).

Both versions of assertion in question Q10, Obj2+ Q10
and Obj2* Q10, are short and easy to read:

assertThat(date1) // Obj2+ Q10
.isInSameHourWindowAs(date2)
.isInSameHourAs(date3);

assertTrue(// Obj2* Q10
Math.abs(date1.getTime()-date2.getTime())

< 3600000 // milliseconds in one hour
&& date3.getHours() == date1.getHours());

However, almost a fourth of the students filling Obj2+
answered Obj2+ Q10 as if the second method call had date2

as receiver, instead than date1. This could point out a cognitive
problem with nested assertions: misperceiving the last object
encountered as the subject of the next call. This hypothesis is
worth investigating by a different experiment, but cannot be
ascertained on the basis of just one question in our experiment.

The choice of names affects comprehension not only for
question Obj1+ Q9 (F-measure = 0.77), but also for question
Obj2+ Q2 (F-measure = 0.75):

assertThat(colors)
.containsOnlyElementsOf(elems);

where the meaning of containsOnlyElementsOf, defined
in the documentation as “verifies that actual (e.g., colors)
contains all the elements of the given iterable (e.g., elems) and
nothing else, in any order and ignoring duplicates”, has been
mistaken for any of

• actual contains some of the elements of the given iterable
and nothing else

• actual contains the same elements of the given iterable,
in any order and with the same multiplicity.

See also the issue10 opened on GitHub.
The choice of names affects comprehension in both ways;

for instance, the AssertJ version of the question Q13 of Obj1:

assertThat(arr1).isSubsetOf(arr2);

grossly outperformed its counterpart in JUnit Basic style, both
in term of comprehension (0.92 vs. 0.62 respectively) and
elapsed time (1.54 vs. 3.54 minutes respectively), as almost all
participants correctly understood the meaning of isSubsetOf.
Analogous result we have for question Obj2+ Q20, where
almost all the responders correctly interpreted the method
containsOnlyOnce between lists, while its JUnit Basic
counterpart confused many.

A borderline case is question Q12 of Obj2:

// Obj2+ Q12
assertThat(a).containsOnlyOnce(b);

for(int t : b) { // Obj2* Q12
int found = 0;
for(int i : a) {
if(i == t) found++;

}
assertEquals(found,1);

}

Answering Obj2+ Q12, 28% of the responders interpreted
the containsOnlyOnce method as meaning exactly one value
of the argument (b) belongs to the receiver (a) instead of the
actual group (a) contains the given values (b) only once, as
stated by the method specification; thus, we have a further
example of unfortunate name choice. But performances on
Obj2* Q12 were even worse: 33% of the responders made the
same mistake (probably misreading the final assertion as to be
placed after the end of the external loop); moreover, another
26% scattered their (all wrong) answers without a significant
pattern, suggesting the subjects’ incapability of understanding
this code, though it is quite simple. Thus, the poor performances
in both treatments, due to different causes, partially mask each
other.

Summary: testers should carefully analyse the documen-
tation of the chosen assertion library in order to fully
understand the real meaning of the available methods. At
the same time, assertion libraries developers should pose
more attention in the choice of the methods names. This
could reduce misunderstanding and make the learning curve
gentler.

F. Threats to validity

This section discusses the threats to validity that could affect
our results: internal, construct, conclusion and external validity
threats [19].

Internal validity threats concern factors that may affect a de-
pendent variable (in our case, TotalComprehension, TotalTime,

10https://github.com/joel-costigliola/assertj-core/issues/1075

and TotalEfficiency). Since the students had to participate in
two labs (ten questions each), a learning/fatigue effect may
intervene. However, the students were previously trained and
the chosen experimental design, with a break between the two
labs, should limit this effect. Another threat derives from the
subjectivity involved in the construction of the JUnit Basic
versions of the assertions that we implemented by starting
from the AssertJ ones. We applied a standard approach to
implement JUnit Basic assertions but we cannot be sure that
changing the implementation would not affect the outcome of
the experiment. We plan to verify this as part of our future
work.

Construct validity threats concern the relationship between
theory and observation. This threat is related to how com-
prehension and time were measured. The transcription of the
selected answers for each question has been double-checked
by two of the authors. Precision, Recall and F-measure have
been automatically computed using Excel. Time was measured
by means of time sheets, and was validated qualitatively by
two of the authors, who were present during the experiment.

Threats to conclusion validity can be due to the sample
size of the experiment (51 BSc students) that may limit the
capability of statistical tests to reveal any effect.

Threats to external validity can be related to: (i) the choice
of simple assertions as objects and (ii) the use of students as
experimental subjects. We cannot expect students to perform as
well as testers, but we expect to be able to observe similar trends.
Further controlled experiments with different sets of assertions
(e.g., more complex) and more experienced developers (e.g.,
software practitioners) are needed to confirm or contrast the
obtained results.

V. RELATED WORK

There are several empirical studies about understandability
of JUnit tests. For instance, Grano et al. [7] use an empirical
approach to show that in many cases the code under test is
more readable than its tests, and that human produced tests
are more readable than automatically generated ones. Dak et
al. [5] compare the readability of manually vs. automatically
generated tests, and use empirical experiments to prove
effectiveness of the proposed technique to improve readability
of automatically generated tests. Analogously, Tahir et al. [18]
compare understandability of parametric and standard concrete
test cases by an experiment measuring time and correctness
ratio, and find that, as expected, standard concrete tests are
easier to read and understand.

Though these papers addresses readability of test code by
means quite similar to those used in this paper, their focus
is on comparing different categories of tests disregarding the
assertion styles in them, and we were not able to find any
academic work specifically on assertion understandability, nor
on comparison of different assertion styles.

On the other hand, there are many web pages and posts
stating the superiority of fluent (or Hamcrest) style over classic
JUnit Basic assertions, for instance [2], [6], [9], but without any

scientific support, and missing a clear statement of the aspects
improved or a specific quantification of the improvements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a controlled experiment
aimed at comparing basic and fluent assertions (in particular
JUnit Basic and AssertJ). We analysed the level of comprehen-
sion of the assertions, the time required to answer questions,
and the overall efficiency in completing the assignments.

The results indicate that adopting AssertJ: (1) has no signif-
icant effect on the level of comprehension of the assertions;
(2) significantly reduces the time required to understand
assertions; (3) significantly increases the overall efficiency
during comprehension of assertions. Therefore, fluent assertions
are a better choice over basic ones.

From the results it also emerges that: (1) testers should
carefully analyse the documentation of the chosen assertion
library in order to fully understand the real meaning of the
available methods; (2) developers of assertion libraries should
pose more attention in the choice of the methods names. This
could reduce misunderstanding and make the learning curve
gentler.

We see the experiment presented here as the first step of
an exploration of assertion understandability encompassing
different styles and languages. Thus, we plan to expand it
first by a three ways comparison of JUnit Basic, AssertJ and
Hamcrest assertions. The general practitioners’ vision is that the
AssertJ style is more readable than the Hamcrest one, because
the dot notation is more readable than the nested calls used to
build complex matchers in Hamcrest. However, we found the
issues about method name choice to have a large impact on
understanding. Thus, it is well possible that Hamcrest assertions
are more understandable, worse notation notwithstanding, if
the names of the matchers better express their meaning, w.r.t.
the names of the assertion methods in AssertJ.

Another follow-up in depth study we plan is replicating
this experiment with professional subjects, both tester and
developer, to confirm our results; of course, we will use more
complex assertions, given the greater knowledge of the subjects.
Moreover, we want to compare the impact of familiarity with
a testing style (in the case of testers), which could increase
the fluent assertion score, vs. proficiency of code writing and
reading (in the case of developers), which could make JUnit
Basic the winner.

Finally, we plan to study the impact of the programming
language on the understandability of assertions, by comparing
analogous styles of assertions, or even better different versions
of the “same” library, across different languages, like Java and
C#. Another way to gauge the language impact, is to make
analogous experiments in the two languages and compare the
results. Thus, we plan to compare built-in assertions in nUnit11,
which are technically close to those in Hamcrest and Fluent
Assertions12 for C# language, to see if we get the same results
as for Java.

11http://nunit.org/
12https://fluentassertions.com/

REFERENCES

[1] JUnit summary of changes in version 4.4, August 2007 (retrieved on
12th April 2018). http://junit.sourceforge.net/doc/ReleaseNotes4.4.html.

[2] Hamcrest vs AssertJ assertion frameworks - which one
should you choose?, 2017 (retrieved on 15th April 2018).
https://www.blazemeter.com/blog/hamcrest-vs-assertj-assertion-
frameworks-which-one-should-you-choose.

[3] G. Adzic. Specification by Example: How Successful Teams Deliver the
Right Software. Manning Publications Co., Greenwich, CT, USA, 1st
edition, 2011.

[4] K. Beck. Test-driven development : by example. Addison-Wesley, Boston,
2003.

[5] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling
readability to improve unit tests. In Proceedings of 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 107–118.
ACM, 2015.

[6] B. Dijkstra. Three practices for creating readable test code, 2016
(retrieved on 15th April 2018). https://www.ontestautomation.com/three-
practices-for-creating-readable-test-code/.

[7] G. Grano, S. Scalabrino, R. Oliveto, and H. Gall. An empirical investiga-
tion on the readability of manual and generated test cases. In Proceedings
of 26th International Conference on Program Comprehension, ICPC 2018,
2018.

[8] R. J. Grissom and J. J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2nd edition, 2005.

[9] S. Gulati. Write more understandable Java tests with matcher
objects and FEST-assert, 2010 (retrieved 15th April 2018).
https://www.developer.com/java/article.php/3901236/Write-More-
Understandable-Java-Tests-with-Matcher-Objects-and-FEST-Assert.htm.

[10] B. A. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based software
engineering. In Proceedings of the 26th International Conference on
Software Engineering, ICSE 2004, pages 273–281. IEEE, 2004.

[11] J. Kohl and B. Marick. Agile tests as documentation. In C. Zannier,
H. Erdogmus, and L. Lindstrom, editors, Proceedings of 4th Conference
on Extreme Programming and Agile Methods, pages 198–199. Springer,
2004.

[12] R. Mee and E. Hieatt. Going faster: Testing the web application. IEEE
Software, 19:60–65, 03 2002.

[13] H. Motulsky. Intuitive biostatistics: a non-mathematical guide to
statistical thinking. Oxford University Press, 2010.

[14] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and P. Tonella. Using
acceptance tests as a support for clarifying requirements: A series of
experiments. Inf. Softw. Technol., 51(2):270–283, Feb. 2009.

[15] F. Ricca, M. Torchiano, M. Leotta, A. Tiso, G. Guerrini, and G. Reggio.
On the impact of state-based model-driven development on maintain-
ability: A family of experiments using UniMod. Journal of Empirical
Software Engineering, 23(3), 2018.

[16] F. Ryan. A look at unit testing frameworks, March 2018.
https://redmonk.com/fryan/2018/03/26/a-look-at-unit-testing-frameworks/.

[17] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 3(52), 1965.

[18] T. Tahir, A. Jafar, S. Zaheer, M. K. Afzal, M. Ahmad, and J. Shafi.
Understandability assessment of concrete and parametric test cases with
respect to time and correctness ratio measures. Journal of Basic and
Applied Scientific Research, 2013.

[19] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

[20] M. Wynne and A. Hellesøy. The cucumber book : behaviour-driven
development for testers and developers. Pragmatic Bookshelf, 2012.

