
Copyright:

© 2017 Springer Science+Business Media

This is a post-peer-review, pre-copyedit version of an article published in Empirical Software Engineering

Journal. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10664-017-9563-8

On the Impact of State-based Model-Driven Development on

Maintainability: A Family of Experiments using UniMod

Filippo Ricca, Marco Torchiano, Maurizio Leotta, Alessandro Tiso, Giovanna Guerrini, Gianna Reggio

Abstract:

Context: Model-driven approaches are well-known in the academia but one possible

showstopper to a wider adoption in the industry is the limited empirical evidence for their

claimed advantages and benefits, that could convince the decision makers.

Objective: The aim of this work is gauging one of the claimed benefits of model-driven

approaches, namely improvement in maintainability, with respect to a code-centric approach.

Method: We conducted a family of five experiments involving 100 students that possessed

different levels of education (64 Bachelor, 25 Master, and 11 PhD students; in groups sized

11 to 26 per individual experiment). In these experiments, UniMod – a State-based tool for

Model-Driven Development using the Unified Modeling Language – is compared with Java-

based code-centric programming, for a software maintenance scenario, with the goal of

analysing the effect on the time to perform the maintenance tasks, the correctness of the

modified artefacts, and the efficiency.

Results: The results show a reduction in time to accomplish the tasks and no impact on

correctness. The adoption of the UniMod-MDD approach almost doubles the developers’

efficiency, and in presence of a higher software engineering experience the efficiency is even

three times higher.

Conclusions: We found that the usage of the UniMod-MDD approach in a software

maintenance scenario provides benefits over a pure code-centric approach. The benefits

deriving from the UniMod-MDD approach are appreciable for all the categories of students,

although with differences.

Digital Object Identifier (DOI):

https://doi.org/10.1007/s10664-017-9563-8

Empirical Software Engineering (EMSE) manuscript No.
(will be inserted by the editor)

On the Impact of State-based Model-Driven
Development on Maintainability: A Family of
Experiments using UniMod

Filippo Ricca · Marco Torchiano ·
Maurizio Leotta · Alessandro Tiso ·
Giovanna Guerrini · Gianna Reggio

Received: date / Accepted: date

Abstract Context: Model-driven approaches are well-known in the academia
but one possible showstopper to a wider adoption in the industry is the lim-
ited empirical evidence for their claimed advantages and benefits, that could
convince the decision makers.

Objective: The aim of this work is gauging one of the claimed benefits
of model-driven approaches, namely improvement in maintainability, with re-
spect to a code-centric approach.

Method: We conducted a family of five experiments involving 100 students
that possessed different levels of education (64 Bachelor, 25 Master, and 11
PhD students; in groups sized 11 to 26 per individual experiment). In these ex-
periments, UniMod – a State-based tool for Model-Driven Development using
the Unified Modeling Language – is compared with Java-based code-centric
programming, for a software maintenance scenario, with the goal of analysing
the effect on the time to perform the maintenance tasks, the correctness of the
modified artefacts, and the efficiency.

Results: The results show a reduction in time to accomplish the tasks and
no impact on correctness. The adoption of the UniMod-MDD approach al-
most doubles the developers’efficiency, and in presence of a higher software
engineering experience the efficiency is even three times higher.

Conclusions: We found that the usage of the UniMod-MDD approach in
a software maintenance scenario provides benefits over a pure code-centric
approach. The benefits deriving from the UniMod-MDD approach are appre-
ciable for all the categories of students, although with differences.

Filippo Ricca, Maurizio Leotta, Alessandro Tiso, Giovanna Guerrini, Gianna Reggio
DIBRIS, Università di Genova, Italy
E-mail: filippo.ricca|maurizio.leotta|alessandro.tiso|giovanna.guerrini|gianna.reggio@unige.it

Marco Torchiano
DAUIN, Politecnico di Torino, Italy
E-mail: marco.torchiano@polito.it

2 Filippo Ricca et al.

Keywords Model-Driven Development · MDD · UML · Maintainability ·
UniMod · Family of experiments · Replication and Maintenance Task

1 Introduction

Model-Driven Development (MDD) is a software production approach that
uses models as primary artefacts of the software development process [1].
In practice, higher-level models are progressively transformed into lower-level
models until the models can be made executable using either code generation
or model interpretation.

Although model-driven approaches are popular in academia, their intro-
duction into industry seems to be slow [2,3,4,5]. Apparently, one of the hur-
dles lies in the difficulty of convincing managers of MDD advantages. The
main claimed advantages of MDD are improvements in productivity, portabil-
ity, maintainability, and interoperability [6]. However, such claims demand for
empirical evidence. Unfortunately, in the literature, empirical studies evaluat-
ing MDD and considering these aspects [7,8,9,10,11,12] are rare.

In this paper, we focus on maintainability as main quality attribute to
study and on controlled experiments – with students as participants – as em-
pirical strategy. Among the above-mentioned claimed advantages of MDD, we
chose to evaluate the improvements in maintainability because: (1) software
maintenance is recognized as one of the most expensive activities in software
development [13] and (2) there are only a few studies (see Section 6.2) assessing
the MDD benefits during software maintenance. The main goal of this work is
understanding whether MDD is able to reduce software maintenance effort (or
not), saving time, improving efficiency, and thus cutting costs. Unfortunately,
the goal, stated in that way, is too abstract and ambitious. Indeed, it is not
possible to experiment all the MDD approaches and related tools. Thus, we
had to select an instance among all the possible MDD proposals. We define
the concrete goal of our study as follows: evaluate the difference (if any) of
performing software maintenance activities using (1) an abstract executable
representation of the code based on UML models or (2) more traditional code-
centric programming.

We selected the tool to employ in our experiments among the ones that
model software artefacts by means of UML. This is due to the fact that UML
is the only language who was certainty known by all the participants to the
family of experiments. We analysed several tools such as AndroMDA1 and
BridgePoint2 but we found them too complex for our experiments (participants
could devote only a few hours to the experiment as described in the paper).
On the other hand, we found UniMod [14] more simple to install and use and
fast to learn.

In this paper, we present a family of controlled experiments planned and
conducted using a rigorous approach as described by Wohlin et al. [15] and

1 http://www.andromda.org/
2 http://www.mentor.com/products/sm/model development/

On the Impact of State-based Model-Driven Development on Maintainability 3

Jedlitschka et al. [16]. Five experiments have been designed and conducted
involving overall 100 students with different levels of education (in detail 64
BS, 25 MS, and 11 PhD students; from 11 to 26 per experiment). Subjects
were asked to perform maintenance/evolution tasks on two different kind of
software artefacts — UniMod artefacts and conventional Java code — and their
performance has been assessed and compared in terms of tasks correctness,
time to complete the tasks and efficiency (i.e., the number of correct tasks per
hour).

Specifically, the work presented here compares UniMod development (a
mix between models production and coding) with conventional code-centric
programming in the context of maintenance/evolution. In UniMod, the main-
tenance tasks are mainly conducted on the executable models composing the
system. The difference between the two approaches consists in the artifacts
available to the maintainer and the ensuing working approach, while the work-
ing environment (the IDE) is as far as possible similar and close to that of a
typical working context.

The paper extends our previous preliminary work [17] in several directions.
We provide here the following new contributions: (1) a deeper presentation
of the maintenance tasks executed by the participants, (2) results from four
further replications, (3) an extended data analysis (e.g., a post-experiment
questionnaires analysis was added), and (4) a final discussion on the achieved
results, that was absent in our previous workshop paper [17] and some practical
implications of our study.

The remainder of the paper is structured as follows. Section 2 gives a brief
introduction to UniMod and shows in detail a maintenance task executed by
the students during the experiments. Then, Section 3.4 provides details on the
design of the family of experiments, including the definition of the experiment,
context selection, hypotheses formulation and instrumentation. Experimental
results are reported in Section 4 and then discussed in Section 5 together with
threats to validity. Finally, related work and conclusions close the paper in
Section 6 and Section 7, respectively.

2 UniMod

UniMod is an instance of the State-based Model-Driven Development (Sb-
MDD) tools category. Such tools support the development of software system
whose behaviour can be described by an automaton (e.g., Automotive, Avion-
ics, or Aerospace systems). Another well-known tool in the SbMDD category
is MathWorks Stateflow3, an industrial-grade control logic tool used to model
and simulate combinatorial and sequential decision logic based on state ma-
chines and flow charts. More in detail, UniMod is a MDD approach for de-
signing and implementing object-oriented programs. The approach relies on a
specific instance of automata-based programming (SWITCH-technology [18])

3 http://www.mathworks.com/products/stateflow/

4 Filippo Ricca et al.

Fig. 1 Svetofor: Graphical User Interface (GUI).

and on UML. A tool for the development and execution of UniMod models is
available; it allows creating, editing, and executing UniMod models. A UniMod
model is composed by several different artefacts: a connectivity schema that
depicts the architecture of the system (i.e., how the components of the system
are connected) and by its components (i.e., EventProvider, StateMachine, and
ControlledObject, see Section 2.2).

We will briefly introduce UniMod using as example Svetofor4, one of the
objects used in our family of experiments (the other one is Telepay5). The
interested reader can find more information about UniMod in [14].

We chose UniMod due to four main reasons: (1) the approach relies on
UML that is well-known by most students and professionals [19,20]; (2) a free
software supporting tool exists6 that, in our opinion, is mature enough in terms
of features and usability; (3) the UniMod tool is, in our opinion, simple to use
and to install and thus suitable to many students and developers; (4) UniMod
did not remain only within the academic context and has been used in various
organizations [14].

In the remainder of this section, we first present the Svetofor system. Sec-
ond, we discuss the UniMod ingredients, and third we show in detail one of the
Svetofor maintenance tasks executed by the students. Finally, we give some
information about the UniMod tool (an Eclipse plug-in) used in the experi-
ments.

4 http://is.ifmo.ru/unimod-projects-en/svetofor/
5 Here, for space reasons we will describe more in detail Svetofor than Telepay.
6 http://unimod.sourceforge.net/

On the Impact of State-based Model-Driven Development on Maintainability 5

2.1 Svetofor

Svetofor is a smart traffic light system (TLS) simulator equipped with a GUI
representing pedestrians and cars. It can be downloaded from the UniMod
website. It simulates a smart TLS that is capable of detecting incoming pedes-
trians and cars at a crossroad. The user can press the “add car” and “add
pedestrian” buttons to make appear cars and pedestrians, respectively, in the
GUI (see Figure 1). When a pedestrian reaches the crossroad, the TLS real-
izes that a pedestrian is arrived and switches to green for him/her until a car
appears. The same happens for cars. For this reason the traffic light system is
said smart.

2.2 Connectivity Schema

A connectivity schema is a class diagram depicting classes with the following
three stereotypes: EventProvider, StateMachine and ControlledObject.

Event providers are connected to state machines by means of UML as-
sociations and supply them with events. State machines are connected to the
objects they control. Event providers are active: they affect the state machines
by means of events. By contrast, controlled objects are passive: they perform
actions when a state machine calls them (i.e., they offer some operations that
the connected state machines can call). UniMod adopts the following naming
convention for operations of controlled objects [14]: the operations used as in-
put, i.e., returning a value to the state machine, are named xi (with i≥0), while
the operations used as output, i.e., changing the value of a controlled object’s
field or executing an action (e.g., print(“Hello World”)), are named zi. The
state machines are activated by the events and, depending on the values of
the input variables, controlled objects are affected and/or transitions to new
states are executed.

In UniMod, event providers and controlled objects are specified in Java
while state machines are expressed in visual form by means of appropriate
diagrams, similar to UML state machines (see Section 2.3).

The connectivity schema of Svetofor is depicted in Figure 2. It contains:

– Three state machines A1, A2, and A3 (shown in the middle of Figure 2).
– Three event providers p1, p2, and p3. They send several kinds of events

to the A1 state machine. For example, the event e101 (a tick of clock) is
sent every second. Similarly, events e201, and e301 are sent every 5 and 0.1
seconds, respectively. On the contrary, events e011, e012, e021, and e022 are
sent when the buttons of the GUI are pressed (i.e., Add Pedestrian and
Add Car).

– Two controlled objects: o1, mainly used to display the configuration/state
of the TLS on the GUI, and o2 used for adding and moving pedestrians/cars
on the GUI.

6 Filippo Ricca et al.

Fig. 2 Svetofor: Connectivity Schema (Class Diagram).

In UniMod, the comments explaining the meaning of events and opera-
tions are shown in the connectivity schema between brace parentheses (see
Figure 2).

On the Impact of State-based Model-Driven Development on Maintainability 7

2.3 State Machines

State machines have simple and composite states, one initial state and zero,
one or more final states. The transitions between states have labels of the
following form:

event [guard] / actions

The square brackets contain a boolean formula (optional), which is the con-
dition of the transition firing (i.e., the guard condition). For example, in the
state machine A2 (see Figure 3), the label on the transition between the states
s2 and s3:

e201[o1.x1] /o1.z147

has the following meaning (see comments between brace parentheses in Fig-
ure 2):

when 5s elapsed [if there are pedestrians] / cars should hurry

While working on state machines with the UniMod tool, textual comments like
the one immediately above appear as pop-up tooltip when the mouse passes
over a transition label (they are generated automatically from the comments
inserted in the connectivity schema). Thus, the transition meaning can be eas-
ily understood using the detailed documentation included in the experimental-
package and the facility provided by the UniMod tool, that translates transi-
tion labels in textual comments.

The state machine A1 is the top level state machine. It receives the events
from every event provider (i.e., p1, p2, and p3). The state machine A1 has
a state (s2) that includes the state machines A2 and A3 (see Figure 3). All
events received by the state machine A1 are automatically passed to A2 and
A3. Self-transitions in A1 are used to invoke the corresponding methods of the
controlled object o2 in response to events related to GUI button pressing.

The state machine A2 is used to control the switching of the TLS. Each
state of A2 corresponds to a configuration of the TLS; for example, the state
s2 corresponds to green for cars and red for pedestrians while state s6 to the
opposite (red for cars and green for pedestrians). The transitions between the
states are triggered by the timer events sent by p1 and p2. When the state
machine enters in a new state, a method of the controlled object o1 is called
to display the right configuration of the TLS on the GUI (see the nodes of A2

in Figure 3; they contain an entry action specified by the keyword enter).

The state machine A3, finally, is used to realize the movement of pedestrians
and cars. Specifically, in state s2 both cars and pedestrians are stopped, in state
s3 only pedestrians are moving and in state s5 only cars are moving8.

7 This odd naming convention (e.g., o1.z14) is a peculiarity of UniMod to reduce the
diagrams size.

8 The complete documentation of Svetofor is available at:
http://is.ifmo.ru/unimod-projects-en/svetofor/

8 Filippo Ricca et al.

Fig. 3 Svetofor: State Machines A1, A2, and A3.

2.4 Svetofor Maintenance Task Example

Maintenance tasks represent the unit of work in our family of experiments.
In order to understand what they consist in, we describe what the execution
of a maintenance task – MT3 in Table 2 – entails. First, we will consider the
impact of the change on the UniMod version of Svetofor and then on the Java
one.

In short, maintenance task MT3 requires to remove the smart behaviour
of the TLS. The documentation available to perform the maintenance tasks

On the Impact of State-based Model-Driven Development on Maintainability 9

Fig. 4 MT3 in the UniMod Model of Svetofor (before → after).

consists of a pdf file with a detailed description of the application (i.e., a
textual description, the state machine diagrams, the meaning of each state of
the state machines and the connectivity schema, and the descriptions of the
event providers and of the controlled objects).

The first step consists of locating the portions of code or model to modify.
Using the documentation (which includes the diagrams shown in Figure 2 and
Figure 3) it is not difficult to understand that we need to modify the state
machine A2; indeed the smart behaviour is implemented in the states s2 and s6

of A2. As previously discussed, state s2 corresponds to green for cars and red
for pedestrians and s6 corresponds to red for cars and green for pedestrians.
In the following, we analyse the case of s2 (s6 is similar). In a “dumb” TLS
the transition outgoing from s2 is only triggered by a predetermined amount of
time (e.g., 40 seconds). By contrast, in our smart TLS, the transition outgoing
from s2 has a guard (o1.x1) that implements the smart behaviour. That guard
is only satisfied if there are pedestrians at the crossroad. Only in this case
the TLS switches to the s3 state (i.e., green for cars flashing). Otherwise (i.e.,
there are no pedestrians) the self-transition s2→s2 (labelled with e201[!o1.x1]) is
selected and thus the state machine remains in state s2.

To remove the smart behaviour in the UniMod model of Svetofor, the guard
o1.x1 in the transition s2→s3 and the self-transition s2→s2 need to be eliminated.
Figure 4 visually shows the required modification.

A similar change has to be done in the Java version of Svetofor. First, start-
ing from the file containing the implementation of the A2 state machine, the
portion of code implementing the state s2 and its logic (that portion is shown
in Figure 5) needs to be located. Second, the portion of code implementing
the self-transition s2→s2 has to be removed. Finally, the code that implements
the guard o1.x1 needs to be deleted from the s2→s3 transition. In Figure 5, we
have marked with * and highlighted in red the lines of code to delete (or com-
ment) for implementing the maintenance task MT3 (original code comments
are marked with // as usual).

10 Filippo Ricca et al.

case s2 :
switch (e) {
 case e201 :
 // s2->s2 e201[!o1.x1]/
 * if (!(o1_x1)) {
 * fireTransitionFound(ctx,path,"s2",event,TR_S2_S2);
 * fireComeToState(ctx,path,"s2");
 * // s2 [o1.z9]
 * o1.z9(ctx);
 * return new StateMachineConfig("s2");
 * }
 // s2->s3 e201[o1.x1]/o1.z14
 * if (o1_x1) {
 fireTransitionFound(ctx,path,"s2",event,TR_S2_S3);
 o1.z14(ctx);
 fireComeToState(ctx,path,"s3");
 // s3 [o1.z1]
 o1.z1(ctx);
 return new StateMachineConfig("s3");
 * }
 // TR not found
 * return config;
 default :
 // TR not found
 return config;
}

Fig. 5 MT3 in the Java Version of Svetofor.

2.5 UniMod Tool

The UniMod tool is available as Eclipse plug-in; it provides the following soft-
ware components: (1) a graphical editor for creating/editing the connectivity
schema and the state machines; (2) an on-the-fly model validator that notifies
to the user errors/warnings and suggests possible quick-fixes (similarly to a
modern IDE for a traditional programming language)9; (3) a launcher that
allows to execute the UniMod model in “one click”. Note that, starting from
the connectivity schema, the tool generates a skeleton Java class for each event
provider and controlled object depicted in the connectivity schema. Thus, to
implement the behaviour of events and operations, the developer only has to
fill the body of the methods in these Java classes.

3 Experimentation Definition and Planning

This section reports the definition, design, and settings of the family of exper-
iments in a structured way, following the GQM approach and guidelines by
Wohlin et al. [15] and Jedlitschka et al. [16].

For replication purposes, the experimental package has been made avail-
able10.

9 In our study we have not measured if this capability has contributed, or not, to the
obtained results.
10 http://sepl.dibris.unige.it/UniModVSJava.php

On the Impact of State-based Model-Driven Development on Maintainability 11

The goal of the study is analysing the difference (if any) of performing
software maintenance/evolution activities using (1) an abstract executable
representation of the code based on UML models or (2) more traditional code-
centric programming with the purpose of evaluating possible benefits from
adopting the UniMod-MDD approach.

Quality focus are: (1) correctness of the final artefacts, (2) time required
to perform the maintenance tasks, and (3) efficiency that measures the num-
ber of correct tasks per hour. Results of this study can be interpreted from
multiple perspectives: a researcher interested to empirically assess the effect
of UniMod in maintenance/evolution tasks; a practitioner, willing to under-
stand and quantify possible benefits in the maintenance phase deriving from
the introduction of a specific MDD approach/tool in his/her company. The
context of this study consists of academic students as participants playing the
role of software maintainers and two small (< 2K LoC) software systems to
be modified as objects.

3.1 Participants

Participants are university students, either Bachelor, Master or PhD students.
The study consists of a family of five experiments involving in total 100 stu-
dents:

– UniGE-BS1 was performed with 18 students in their last year of the BSc
degree in Computer Science at the University of Genova (academic year
2011/2012 first semester). Preliminary results of this experiment has been
reported in a previous paper [17];

– PoliTO-PhD with 11 PhD students from Politecnico di Torino (academic
year 2011/2012 second semester);

– UniGE-MS with 25 students in their last year of the MSc degree in Com-
puter Engineering at the University of Genova (academic year 2011/2012
second semester);

– UniGE-BS2 with 20 Bachelor students from University of Genova (last
year of the BSc degree in Computer Science, academic year 2012/2013 first
semester); and

– UniGE-BS3 with 26 Bachelor students from University of Genova (last
year of the BSc degree in Computer Science, academic year 2013/2014 first
semester).

Bachelor students in Computer Science at the University of Genova have
just basic notions of programming in Java and some initial knowledge of soft-
ware engineering. UML was explained during the Software Engineering course
(i.e., the course in which the experiment was conducted) where a specific at-
tention to UML state machines was given. The experiment was introduced as
a normal laboratory assignment. Before it, the students participated in several
labs about UML and software engineering tasks.

12 Filippo Ricca et al.

Master students in Computer Engineering at the University of Genova have
an average knowledge about software engineering topics and a good knowledge
on Java programming. In fact, they previously developed non-trivial projects
using UML as modelling language and Java as implementation language.

Most PhD students held a Master in Information and Communication
Technology Engineering; a few were carrying out research in the field of Elec-
tronic Engineering.

All participants attended (at least) (a) one Java programming course that
made them familiar with that language and with the Eclipse IDE, and (b) one
software engineering course where they learned analysis, design and software
testing principles.

Before the experiments, all the subjects have been trained in UniMod pro-
gramming with a two hours session organized as follows: (1) a talk providing
an introduction to model-driven techniques, Executable UML and explaining
how UniMod works (i.e., details about Connectivity Schema, EventProvider,
StateMachine, ControlledObject etc. as described in Section 2); then (2) a
practical session where the instructor developed from scratch in UniMod the
HelloWorld project [17], i.e., a complete and executable “Helloworld” program
that prints the string “Hello, World!” on the console for ten times, then it
prints the string “Bye, World!” for ten times. During the session the instruc-
tor described: (1) how to implement the various components of an UniMod
project; (2) the feature of the graphical editor; (3) how to apply the change
requests to the HelloWorld project using UniMod (he highlighted which por-
tions of the Java code can be modified or not since auto-generated by the tool),
and (4) how to apply the same changes in case UniMod is not adopted, (e.g.,
how to manually change the state machines Java implementations). Moreover,
to become familiar with UniMod, we asked the students to re-develop from
scratch the HelloWorld project and executing some simple maintenance tasks
on that system.

3.2 Experimental Objects

In the following, we provide some details on the selection process and con-
struction of the experimental objects together with their description.

We chose to focus on desktop applications since we needed simple self-
contained applications. The other possible alternative, i.e. web applications,
would have required a web app container (e.g. Tomcat), thus making the ex-
perimental setup more complex, the comprehension activity – required by the
maintenance tasks – more difficult, and eventually it would have added new
confounding factors. Last but not least, the prospective participants included
also students without adequate knowledge on web app development.

Selection Process: according to our design (see Section 3.4), we needed
two experimental objects, each developed in two different ways (UniMod and
Java only). We considered five possible alternative approaches to select/produce
the experimental objects: (1) finding two applications for which both versions

On the Impact of State-based Model-Driven Development on Maintainability 13

(i.e., UniMod and Java only) were available, (2) selecting two existing UniMod
applications and then developing by ourself the corresponding Java only ver-
sions, (3) selecting two existing Java only applications and then developing by
ourself the corresponding UniMod versions, (4) adopting an hybrid approach
consisting in having an application developed starting from an existing Uni-
Mod implementation and the other developed from a Java implementation,
and finally (5) developing both versions from scratch. The first option would
have been optimal but, unfortunately, we could not find any application de-
veloped in both versions. Thus, since we matured much more development
experience in Java than in UniMod, we chose the option number 2 (we be-
lieve that if we developed the UniMod versions the result would have been
suboptimal with the possibility of influencing the results of the experiment
due to low-quality UniMod implementations). As a consequence, we searched
the internet and we found only the 22 reference applications available at the
website managed by the UniMod’s designers11. We analysed them; first we
discarded those lacking a comprehensive English documentation; then, among
the remaining candidates, we selected Telepay and Svetofor for the following
reasons: (1) they are comparable in complexity and size, (2) they have an
adequate complexity (i.e., they are not trivial) taking into account the time
constraints of the experiments and the skills of the participants, (3) their do-
mains are easy to understand (respectively a traffic light system and a mobile
phone payment terminal), and (4) they are provided with both a detailed En-
glish documentation and a ready to import Eclipse project archive. Clearly,
our selection process has been tailored taking into account the limited number
of available applications, once we chose option 2.

Java only versions development: starting from the two selected Uni-
Mod projects (we refer to them as Svetofor+ and Telepay+ respectively), we
built two new software systems (we refer to them as Svetofor– and Telepay–
respectively) completely realized in Java and with the same functionality of
the original ones. In practice, we decided to implement the UniMod state ma-
chines contained in Svetofor+ and Telepay+ completely in Java using the
nested switch approach [21]. The rationale behind this choice is: (1) usually
students know it very well and adopt it, (2) rarely bachelor students are able to
master/command design patterns, such as, e.g., State Pattern [21], and (3) the
state machines of the selected systems are quite small. On the contrary, all the
other components of the original projects (i.e., GUIs, controlled objects and
event providers) were integrally copied in Svetofor– and Telepay– to have two
running systems equivalent to Svetofor+ and Telepay+.

Svetofor has already been discussed in Section 2. The UniMod version
of the Svetofor system consists of three event providers with 12 events in
total, three state machines (A1, A2, A3) and two controlled objects with 30
operations in total. Overall 701 Java LOCs are used to implement the GUI
and the behaviour of the event providers and controlled objects. A1 has two
states and 8 transitions, A2 has 11 states and 15 transitions and A3 has four

11 http://is.ifmo.ru/unimod-projects-en/

14 Filippo Ricca et al.

Fig. 6 Telepay GUI

states and 9 transitions. On the other hand, the Java version of the system
consists of five Java classes for a total of 1711 LOCs, in this case including
the implementation of the state machines. Note that Svetofor is conceptually
similar to the example “Modeling an Intersection of Two 1-way Streets using
State flow” given on the MathWorks Stateflow’s website12 (see more details
about MathWorks Stateflow in Section 6). Indeed, in both cases the behaviour
of traffic lights system is provided by means of state machines (see the diagram
in the linked web page).

Telepay13 simulates a mobile phone payment terminal (see Figure 6).
The user can use the keyboard to insert the phone number. Then, she/he
can select some banknotes to recharge the mobile phone. The UniMod version
of the Telepay system consists of three event providers with 8 events, three
state machines (A1, A2, A3) and three controlled objects with a total of 15
operations. Overall 972 Java LOCs are used to implement the GUI and the
behaviour of the event providers and controlled objects. A1 has six states and
13 transitions, A2 has three states and four transitions and A3 has three states
and three transitions. By contrast, the Java version of the Telepay system
consists of 10 Java classes for a total of 1824 LOCs.

3.3 Variables and Hypotheses Formulation

The family of experiments has one independent variable (also called “main
factor” or Treatment from here on) with two possible levels: Java only or
UniMod. The former means the maintenance tasks are executed on Java code
using the Eclipse IDE. The latter indicates the tasks are executed on the
UniMod artefacts (i.e., Connectivity Schema, EventProvider, StateMachine,
and ControlledObject) using the UniMod-plugin installed on the Eclipse IDE.

12 https://www.mathworks.com/help/stateflow/examples/modeling-an-intersection-of-two-1-way-streets-using-stateflow.html
13 http://is.ifmo.ru/unimod-projects-en/teleplay/

On the Impact of State-based Model-Driven Development on Maintainability 15

Our family have three dependent variables, on which treatments are com-
pared measuring three different constructs: (i) Correctness, (ii) Time required
to perform the maintenance tasks, and (iii) Efficiency. Each construct is
measured with a variable (respectively TotalCorrectness, TotalTime, and To-
talEfficiency) for which we defined the relative metric. Figure 7 graphically
shows the relationships between Treatment, Constructs, Variables, and Null
Hypotheses.

MDD

Efficiency

Time

Correctness

Treatment
(UniMod vs Java only)

TotalEfficiency

TotalTime

TotalCorrectness

H0a

H0b

H0c

Fig. 7 Relationships between Treatment, Constructs, Variables, and Null Hypotheses

The correctness of each maintenance task was assessed by executing an
automated JUnit acceptance test suite and giving a correctness score from
0 (totally incorrect or not executed task) to 4 (completely correct) for each
maintenance task, according to the number of test cases passed (we already
adopted a similar strategy in previous experiments [22,23]). More in detail,
TSi = {Ti1, Ti2, ..., Tin} is a set of n test cases for each MTi

14 and for each
system. We gave correctness scorei = 0 if all the testcases in TSi failed, 4
if all the testcases in TSi passed. We assigned correctness scores 1, 2, and
3 when the number of passed testcases is respectively included in: (0, 1/3n],
(1/3n, 2/3n], (2/3n, n). Finally, the total correctness for each subject (Total-
Correctness variable) was computed summing up the four scores. Thus, the
TotalCorrectness variable ranges from zero (no correct tasks) to 16 (four com-
pletely correct tasks).

Time was measured by means of time sheets. Students recorded start and
stop time for each implemented maintenance task. In this way, we were able to

14 The number of test cases is different for each maintenance task.

16 Filippo Ricca et al.

compute the time in minutes (stopT ime−startT ime) required to execute each
individual maintenance task. Finally, the TotalTime variable was computed
summing up these four values for each participant.

Efficiency measures the efficiency of a participant in the execution of the
maintenance tasks. The efficiency is a derived measure that is computed as
the ratio between artefacts correctness and time to perform the four mainte-
nance tasks. To provide an immediately comprehensible measure, we decided
to measure the task efficiency measure as number of correct maintenance tasks
per hour. Considering that the task time is measured in minutes we can define
the TotalEfficiency variable as15:

TotalEfficiency =
TotalCorrectness/4

TotalTime/60
=

TotalCorrectness

TotalTime
· 60

4
(1)

Thus, we can state the null hypotheses for the study in this schematic way:

– H0a: TotalCorrectness (UniMod) = TotalCorrectness (Java only)

– H0b: TotalTime (UniMod) = TotalTime (Java only)

– H0c: TotalEfficiency (UniMod) = TotalEfficiency (Java only)

Since we could not find any previous clear empirical evidence that points out
a clear advantage of one approach vs. the other, we formulated H0a, H0b, and
H0c as non-directional hypotheses. The objective of a statistical analysis is to
reject the null hypotheses above, so accepting the corresponding alternative
ones: H1a, H1b, and H1c.

In our family of experiments, we also analysed the effect of the participants’
profiles on the dependent variables. In particular, we also considered:

– Experiment. It indicates the experiment in our family. Therefore, Experi-
ment is a categorical nominal variable that can assume the following values:
UniGE-BS1, UniGE-BS2, UniGE-BS3, UniGE-MS, and PoliTO-PhD.

– Maintainers’ SE (Software Engineering) experience. The experience
of students could be a cofactor playing a significant effect. Specifically, we
are interested in studying how such factor interacts with the Treatment.
We approximated Maintainers’ SE experience as their level of education,
i.e. bachelor, master or PhD. PhD students were considered to have high
SE experience, master students medium, while bachelor students low (we
adopted a similar strategy in previous experiments [24,25]). Thus Main-
tainers’ SE experience is a categorical ordinal variable with three levels.

15 TotalCorrectness is divided by 4 since a fully correct task is assigned a score of 4, while
TotalTime is divided by 60 because we want to measure tasks per hour while the time is
measured in minutes.

On the Impact of State-based Model-Driven Development on Maintainability 17

3.4 Experiment Design

The family of experiments adopts a counterbalanced within subjects design
(see Table 1) intended to fit two Lab sessions.

Participants were split into four groups each one working in Lab 1 on a
system with a treatment and working in Lab 2 on the other system with a
different level of the treatment: Java only (i.e., –) or UniMod artefacts (i.e.,
+). The design ensures that each subject works on different systems in the
two Labs, receiving each time a different treatment.

To equally distribute students in the various groups, we split students in
groups balancing as much as possible their software engineering and computer
science experience/ability. For BSc and MSc students we used the average
score of the previous software engineering lab grades. For PhD students we
followed the indications provided by the professor of the PhD course in which
the students were enrolled. He subjectively characterized the ability level of
the students based on the information he acquired during the course about
them.

A within-subjects design was chosen because it allows collecting more data
points from a limited number of participants. Moreover, it is well-known that
counterbalanced designs limit as much as possible learning effects [26].

3.5 Materials, Procedure, and Execution

This section details the procedure we followed to perform the experiments in
our family, and the material employed.

All the experiments of the family took place in a laboratory room equipped
with computers. For each group (see Table 1), we prepared a zip file containing
two Eclipse projects (one for Lab) and their documentation (common for both
the treatments), which consists of: a description of the applications, the state
machine diagrams, the meaning of each state of the state machines, the con-
nectivity schema, the descriptions of the event providers and of the controlled
objects (as described in Section 2)16. Then, the zip files were made available
on a Web server. The experiments were introduced as a laboratory assignment
about UniMod.

16 For both projects, we used the original documentation available at:
http://is.ifmo.ru/unimod-projects-en/

Table 1 Experimental Design (– = Java only, + = UniMod)

Group A Group B Group C Group D

Lab 1 Svetofor + Svetofor – Telepay – Telepay +

Lab 2 Telepay – Telepay + Svetofor + Svetofor –

18 Filippo Ricca et al.

To assess the experimental material and to get an estimate of the time
needed to accomplish the tasks, a pilot experiment with one BSc student in
Computer Science at the University of Genova was accomplished, before the
UniGE-BS1 experiment. The student finished the eight maintenance tasks
(four for each system) in approximately seven hours and gave us some infor-
mation on how improving the experimental material. Minor changes were then
made to the experimental material and especially to the words used in the text
explaining the maintenance tasks to make them clearer.

For each Lab, the subjects had three hours and half to complete the four
maintenance tasks: MT1-MT4 (Table 2 and Table 3 show respectively the
maintenance tasks for the Svetofor and Telepay). We designed the mainte-
nance tasks for the two systems taking inspiration from the seminal paper [27]
that categorise the maintenance tasks on several dimensions. The maintenance
tasks, for the two different systems: 1) change the customer-experienced func-
tionality, 2) are very similar, and 3) are of comparable difficulty. In particular,
for each system, MT1 and MT2 can be classified as corrective tasks, MT3 as
reductive, and MT4 as enhancive [27]. The designed maintenance tasks are
simple to fit a one day experiment but not trivial and were mainly designed
for bachelor students. We remind the reader that participants using UniMod
(treatment +) have to work on Connectivity Schema, StateMachine and Con-
trolledObject, without modifying the generated code (i.e., the implementation
of the state machines), while participants using Java (treatment –) have to
perform the maintenance tasks by directly changing the provided code. Be-
tween the two laboratory sessions (Lab 1 and Lab 2) a 15-minutes break was
given.

Each subject received a paper sheet containing some instructions to set-
up the assignment (how to download the zip files, how to import an Eclipse
project, and how to execute the applications). For each Lab session, the ex-
periment execution steps were as follows:

1) Participants had to download the zip file (corresponding to the group
she/he belongs to) containing the Eclipse project from a given URL and
import it.

2) Participants were given 15 minutes to read the description of the system
and understand it (Svetofor or Telepay).

3) Participants were given five minutes to execute the application trying its
functionalities.

4) We delivered a sheet containing the four maintenance tasks.

5) Participants had to write their name on the delivered sheet.

6) For each maintenance task (MT1-MT4) contained in the delivered sheet:

a) Participants had to record the start time.

b) Participants had to perform the maintenance task (for Svetofor or
Telepay).

c) Participants had to record the stop time.

Finally, participants were asked to compile a post experiment question-
naire (see Table 4). That questionnaire aimed at both gaining insights about

On the Impact of State-based Model-Driven Development on Maintainability 19

Table 2 Maintenance Tasks and Impact (not shown to the students) for Svetofor. (J) means
that a change to Java code is required also in the case of the UniMod treatment (recall, the
behaviour of the operations of the controlled objects is expressed in Java, see Section 2.2).

MT1: Change how cars appear. In the original version of the application, when you press
the button “Add car left (right)” a new car from the left (right) appears. After the change,
when you will press the button “Add car left (right)” the car should appear from the right
(left)

Impact: Modify two transitions

Type: Corrective

MT2: When the light is green for the cars and a pedestrian reaches the crossroad, the green
for the cars blinks (for about 5 seconds) and then the traffic light system switches to yellow
for the cars. Change the application so that the green light for the car does not blink but
remains fixed (again for about 5 seconds)

Impact: Delete one state and two transitions and modify one transition

Type: Corrective

MT3: Delete the “smart” behaviour, i.e., after the change the system has to work as a
conventional traffic light system

Impact: Delete a transition and modify a transition. See Section 2.4

Type: Reductive

MT4: When the traffic light system switches from green to red for cars, the yellow has to
flash (for 5 sec) instead of being fixed

Impact: Add one state and two transitions and (J) add one operation to a controlled object

Type: Enhancive

the students’ behaviour during the experiment and finding motivations for
the quantitative results. It included questions about: clarity of the mainte-
nance tasks (PQa), ability of participants to understand the provided Java
code (PQb) and UniMod models (PQc), clarity of the documentation (PQd),
exercise usefulness (PQe), and change localization and modification in the
UniMod model vs. bare code (PQf and PQg). Answers were on a Likert scale
ranging from one (strongly agree) to five (strongly disagree).

3.6 Analysis Procedure

Different kinds of statistical tests have been used to analyse the results of this
family of experiments. All of them have been applied using the R statistical
environment [28].

First of all, for each dependent variable we checked if the data set is well-
modelled by a normal distribution. For this task, we generated the Quantile-
Quantile plots (QQ-plots) for a first visual analysis. Then, we used the Shapiro-

20 Filippo Ricca et al.

Table 3 Maintenance Tasks and Impact (not shown to the students) for Telepay. (J) means
that a change to Java code is required also in the case of the UniMod treatment (recall, the
behaviour of the operations of the controlled objects is expressed in Java, see Section 2.2).

MT1: “Reverse” the construction mode of the phone number. When you press a button
on the keypad each digit is concatenated in the end of the number in the following way: if
for example you press 2, then 3, then 5, then 7 the resulting number will be 2357. The new
software (the one obtained after you have performed this change request) will concatenate
the digits in the beginning of the number. Considering the previous example the resulting
number will be 7532.

Impact: (J) Modify an operation of a controlled object

Type: Corrective

MT2: In the original application the user can make any amount of refills (i.e. there is no
limit to the charge). Limit the maximum value of a charge to 3000 rubles (over this amount
is no longer allowed to increase the value of the charge).

Impact: Add a transition, modify a transition and (J) add one operation to a controlled
object

Type: Corrective

MT3: Disable the behaviour of the application when an invalid bill is inserted. “invalid
banknote” will be displayed in the GUI but its insertion into the slot (which corresponds to
select it and press the black button at the bottom right) will have no effect.

Impact: Delete one state, modify a transition and (J) add one operation to a controlled
object

Type: Reductive

MT4: Add the following functionality: “donating 10 rubles to a charity association after
confirming the amount of recharge”. Basically, after the confirmation the following question
has to appear in the GUI (in the blue zone dedicated to communications): “Do you want to
donate 10 rubles to the association XYZ?”. The OK button confirms the donation so the
final charge will be the reduced by 10 rubles. Instead, CANCEL rejects the donation. To
verify that you have successfully implemented this change request is requested to change the
final confirmation message (your payment was delivered successfully) so that it will print
the actual value of the charge.

Impact: Add one state and two transitions, (J) add two operations to two controlled object
and (J) modify a operation of a controlled object

Type: Enhancive

Wilk W test, often used in literature in testing for normality [29]. If the W
statistic is significant, the hypothesis that the respective distribution is normal
should be rejected, i.e., there is evidence that the data tested are not from a
normally distributed population.

Second, we compared the results of the five experiments considering the
overall values of correctness, time, and efficiency in performing maintenance
tasks (i.e., without partitioning by treatment). This analysis is used to under-
stand whether (or not) there are significant differences among the experiments.

On the Impact of State-based Model-Driven Development on Maintainability 21

Table 4 Post-experiment Questionnaire

ID Question

PQa The maintenance tasks were perfectly clear to me

PQb I had no problems to understand the provided Java code

PQc I had no problems to understand the provided UniMod models

PQd The provided documentation was useful and clear

PQe I found the exercise useful

PQf Change localization in the UniMod model is simpler than in the code

PQg Modifying the UniMod model is simpler than modifying the code

In such case, we have to test the hypotheses separately for each experiment
(i.e., we cannot put together all the data and conduct an overall analysis). For
this task, we used a non-parametric test because of the non-normality of the
data (see next section). In particular, we selected the Kruskal-Wallis test, a
non-parametric method for testing whether samples originate from the same
distribution [30]. This test is used in literature for comparing two or more
samples that are independent, and that may have different sample sizes, and
extends the Mann–Whitney U test to more than two groups.

Third, to be as much as possible conservative (because of the sample size
and mostly non-normality of the data, see next section), we also used a non-
parametric test to test our hypotheses (H0a, H0b, H0c). This choice is in agree-
ment with the suggestions given in [26, Chapter 37]. The unpaired analysis —
i.e., an analysis of all data grouped by different treatments of the main factor
— was performed using the two-tailed Mann-Whitney (MW) U test [30]. Such
a test allows to check whether differences exhibited by subjects with different
treatments (Java only and UniMod) over the two labs are significant.

Fourth, we performed the analysis of Maintainers’ SE experience co-factor
using a two-way Permutation test [31]. The permutation test is a non-parametric
alternative to the two-way Analysis of Variance (ANOVA). Differently from
ANOVA, it does not require data to be normally distributed. The general
idea behind such a test is that the data distributions are built and compared
by computing all possible values of the test statistic while rearranging the
labels (representing the various factors being considered) of the data points.
Since the permutation test samples permutations of combination of factor lev-
els, multiple runs of the test may produce different results. We made sure to
choose a high number of iterations (i.e., 500.000) so that results did not vary
over multiple executions of the procedure. For the computation of permutation
tests we used the package lmPerm [32]. This analysis was used first to check
the effect of the main cofactors (Maintainers’ SE experience and Experiment)
alone on the dependent variables, then it was used after the main hypothesis
test to confirm the obtained results and to check the effect of the relevant

22 Filippo Ricca et al.

cofactors. The initial analysis was based on a regression equation with the
following structure17 :

D = c0 + c1 · CF1 + c2 · CF2 + c12 · CF1 : CF2

Where the dependent variable (D) can be one of TotalCorrectness, TotalTime,
and TotalEfficiency. The right-hand part include an intercept (c0), two terms
for the cofactors (CFi), and an interaction term (CF1 : CF2). The interaction
term models the influence that two terms have on each other. It can be easily
understood with a simple example: let us consider the sweetness of a cup of
coffee as the dependent variable; the independent variable will be putting sugar
(S) and mixing with a stick (M) is the cofactor, both with two possible levels
(yes and no). In this case the independent variable alone cannot explain the
outcome, though the interaction with the cofactor will. Based on the initial
analysis we selected the most relevant cofactor that was used to further analyse
the effect of treatment on the outcome taking into account its interplay with
the said cofactor. We opted for analysing a single cofactor because of the
limited number of data points, too complex a model could easily result into
spurious correlations and its interpretation is typically more difficult. The
post-test analysis was based on the following equation:

Dependent = c0 + cT · Treatment + cC · CF + cTC · Treatment:CF

The analysis of variance shown whether the treatment has a direct effect on the
dependent variable after discounting for the effect of the cofactor. In particular
the interaction term revealed whether the cofactor influences the effect of the
treatment.

Fifth, we computed the effect size for each dependent variable that is a
quantitative measure of the strength of a phenomenon. While the Mann-
Whitney U test allow for checking the presence of significant differences, it does
not provide any information about the magnitude of such a difference. Accord-
ingly, we used the non-parametric Cliff’s delta (d) effect size [33]. The effect
size is considered small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474,
and large for d ≥ 0.474. The computation of Cliff’s delta was performed using
the effsize package [34].

Finally, regarding the analysis of post-experiment survey questionnaires,
we reported the proportion of negative, neutral, and positive responses in
each item. In addition, we applied a Kruskal-Wallis test to check whether a
significant difference exists among the experiments of the family. The purpose
of this test is checking whether the responses were similar in the different
experiments.

In all the performed statistical tests, we decided, as it is customary, to ac-
cept a probability of 5% of committing Type-I-error (α) [15], i.e., rejecting the
null hypothesis when it is actually true. Since we tested multiple hypotheses

17 This is a simplified structure, since the variables are nominal they will be represented
by n− 1 indicator variables, where n is the number of levels

On the Impact of State-based Model-Driven Development on Maintainability 23

(one per construct) on the same population we ought to counteract the prob-
lem of multiple comparisons and keep family-wise error rate under control.
For this purpose we applied the Bonferroni correction [35]. Such technique
prescribes using for the hypothesis rejection a corrected αB = α/n, where n is
the number of hypotheses. In addition, the correction was also applied to the
analysis of the post-experiment survey questionnaires.

4 Results

This section first shows the analysis we conducted to study the distribution of
the dependent variables, then it reports the results from the family of experi-
ments, analysing the effect of the main factor and Maintainers’ SE experience
cofactor on the dependent variables. Finally, the results from the analysis of
post-experiment questionnaires are reported.

4.1 Variables Distribution

Figure 8 reports the TotalCorrectness (i.e., sum of the score achieved for each
individual MT) of all the participants to the family of experiments without
partitioning by experiment and treatment. The distribution is highly skewed
(Pearson’s moment coefficient of skewness = -2.3). We can observe that in
69.7% of the tasks, the subjects achieved the maximum score (i.e., 16).

0

50

100

0 5 10 15
TotalCorrectness

F
re

qu
en

cy

Fig. 8 Histogram of TotalCorrectness

Considering the different experiments (but without partitioning by treat-
ment) we observe a significant difference among them (Kruskal-Wallis test
p < 0.01), as shown in the boxplot of Figure 9. From the boxplot it is evident
that UniGE-BS1 students reached the worst TotalCorrectness while UniGE-
MS and UniGE-BS2 the best ones. Given these differences, we cannot simply
merge the data from the five experiments. As a consequence, the five data sets
ought to be analysed separately and then we will draw joint conclusions from
the results.

24 Filippo Ricca et al.

4

8

12

16

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD
Experiment

To
ta

lC
or

re
ct

ne
ss Maintainers'

SE Experience

BS

MS

PhD

Fig. 9 TotalCorrectness per Experiment

The difference among the experiments in terms of TotalCorrectness can
be explained slightly more by Experiment factor than Maintainers’ SE expe-
rience factor, as shown by the permutation test reported in Table 5. This can
be observed by looking at the sum of squares. Hereafter, values in bold are
significant.

Table 5 Permutation test of TotalCorrectness vs. Maintainers’ SE experience and Experi-
ment

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 123.16 61.58 500000 <0.01
Experiment 2 184.83 92.42 500000 <0.01
Residuals 196 850.96 4.34

Looking at the time to complete all the tasks (TotalTime variable) for each
student without partitioning by experiment and treatment we can assume a
log-normal distribution which is visually confirmed by the QQ-plot (not shown
in the paper) and by the Shapiro-Wilk test (p-value = 0.37). The same is
true considering the five distributions separately (i.e., executing the analysis
partitioning by experiment).

Then, we performed the same check for log-normality at individual task
time level (i.e., considering the times for each implemented maintenance task
in separate way). We can conclude that not all individual MT times are log-
normally distributed.

Considering the different experiments (but without partitioning by treat-
ment) we observe a significant difference in TotalTime (Kruskal-Wallis p <

On the Impact of State-based Model-Driven Development on Maintainability 25

0.01) among them as shown in the boxplot of Figure 10. From the boxplot
it is evident that PoliTO-PhD students were the fastest students to execute
the maintenance tasks. This is not surprising since in our family of experi-
ments they are the more skilled category of participants. Thus, similarly to
the TotalCorrectness variable, we cannot simply merge the data from the five
experiments but we have to analyse them separately.

0

100

200

300

400

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD
Experiment

To
ta

lT
im

e

Maintainers'
SE Experience

BS

MS

PhD

Fig. 10 TotalTime per Experiment

The difference among the experiments in terms of TotalTime can be ex-
plained more by Maintainers’ SE experience factor than Experiment factor
than, as shown by the permutation test reported in Table 6.

Table 6 Permutation test of TotalTime vs. Maintainers’ SE experience and Experiment

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 82287.92 41143.96 500000 <0.01
Experiment 2 34414.67 17207.33 500000 0.03
Residuals 196 943493.95 4813.74

Similarly to the TotalTime variable, for the efficiency of all the tasks (Total-
Efficiency) without partitioning by experiment and treatment we can assume
a log-normal distribution which is visually confirmed by the QQ-plot (not
shown in the paper) and by the Shapiro-Wilk test (p-value = 0.34). The same
is true considering the five distributions separately.

We then perform the same check for log-normality at the individual task
efficiency level. We can conclude that: not all individual MT efficiencies are
log-normally distributed.

26 Filippo Ricca et al.

Considering the different experiments (but without partitioning by treat-
ment) we observe a significant difference (Kruskal-Wallis < 0.01) among them
as shown in Figure 11. From the boxplot it is evident that PoliTO-PhD stu-
dents were the most efficient. Thus, similarly to the other two variables, we
cannot simply merge the data from the five experiments but we have to analyse
them separately.

0

5

10

15

20

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD
Experiment

To
ta

lE
ffi

ci
en

cy Maintainers'
SE Experience

BS

MS

PhD

Fig. 11 TotalEfficiency per Experiment

The difference among the experiments in terms of TotalEfficiency is ex-
plained only by the Maintainers’ SE experience factor, as shown by the Per-
mutation test reported in Table 7.

Table 7 Permutation test of TotalEfficiency vs. Maintainers’ SE experience and Experi-
ment

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 117.28 58.64 473454 <0.01
Experiment 2 1.62 0.81 5882 0.89
Residuals 196 1559.88 7.96

On the Impact of State-based Model-Driven Development on Maintainability 27

4.2 Hypothesis Testing

4.2.1 H0a: Correctness

Table 8 reports the essential descriptive statistics (i.e., number of partici-
pants18, mean, standard deviation) of TotalCorrectness, the results of the
Mann-Whitney test at the experiment level conducted on data from the five
experiments with respect to this dependent variable, and the Cliff’s delta ef-
fect size (d). The significance level of the test after the Bonferroni correction
is 0.016.

Table 8 Summary statistics for TotalCorrectness at Experiment level

Java only UniMod MW Cliff

Exp n mean sd n mean sd p-value d

PoliTO-PhD 11 14.18 3.52 11 14.91 1.76 0.62 0.10
UniGE-BS1 18 12.44 3.35 16 13.00 3.60 0.65 -0.05
UniGE-BS2 20 15.90 0.31 20 15.85 0.37 0.09 0.23
UniGE-BS3 26 13.96 2.62 27 15.04 2.08 0.53 0.04
UniGE-MS 25 15.92 0.28 27 15.96 0.19 0.70 0.10

Figure 12 summarizes the distribution of TotalCorrectness by means of
boxplots for the family of experiments. Observations are grouped by treat-
ment (Java only or UniMod) and shown partitioning by experiment. The y-axis
represents the cumulative correctness of the four maintenance tasks: TotalCor-
rectness = 16, as already said, represents the maximum value of correctness
and corresponds to four (completely) correct tasks.

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD

4

8

12

16

Java only UniMod Java only UniMod Java only UniMod Java only UniMod Java only UniMod
Treatment

To
ta

lC
or

re
ct

ne
ss Maintainers'

SE Experience

BS

MS

PhD

Fig. 12 Boxplot of TotalCorrectness vs. Treatment per Experiment

18 In some experiments of the family, the number of participants is different between the
two treatments since some of them took part in a laboratory session only.

28 Filippo Ricca et al.

The boxplots show that the PoliTO-PhD, UniGE-BS1, and UniGE-BS3
subjects achieved a better correctness level when accomplishing the tasks with
UniMod. However, for all the experiments of the family the differences are not
statistically significant as indicated in Table 8. Therefore, for all the experi-
ments, we cannot reject the null hypothesis H0a. The Cliff’s delta effect size
(d) is negligible in all the experiments with the exception of UniGE-BS3 where
it is small.

Looking at each maintenance task in each experiment, we cannot find a case
out of 20 (5 experiments x 4 MTs) where a statistically significant difference
in terms of correctness is observed.

A more comprehensive analysis that takes into consideration also the Main-
tainers’ SE experience as a cofactor can be conducted by means of a permuta-
tion test, whose results are shown in Table 9. This analysis highlights the sig-
nificant effect of Maintainers’ SE experience cofactor and confirms the results
of the Mann-Whitney test. No interaction is observed between Maintainers’
SE experience and treatment.

Table 9 Permutation test of TotalCorrectness vs. Treatment and Maintainers’ SE experi-
ence

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 83.29 41.65 500000 <0.01
Treatment 1 6.82 6.82 31240 0.24
Maintainers’ SE experience:Treatment 2 3.59 1.80 12002 0.71
Residuals 195 1019.97 5.23

4.2.2 H0b: Time

Table 10 reports some descriptive statistics of TotalTime variable, the re-
sults of Mann-Whitney test and the effect size. On the other hand, Figure 13
summarizes the distribution of the TotalTime variable by means of boxplots.
Observations are grouped by treatment (Java only or UniMod) and shown
partitioning by experiment.

Table 10 Summary statistics for TotalTime at Experiment level

Java only UniMod MW Cliff

Exp n mean sd n mean sd p-value d

UniGE-BS1 18 82.11 30.59 16 75.00 60.47 0.10 -0.33
UniGE-BS2 20 142.55 66.59 20 60.90 22.75 <0.01 -0.79
UniGE-BS3 26 150.42 90.89 27 89.67 89.96 <0.01 -0.58
UniGE-MS 25 130.80 65.70 27 101.22 65.52 0.08 -0.28
PoliTO-PhD 11 56.82 33.61 11 31.36 20.88 0.05 -0.51

The boxplots show that students using the code-centric approach consis-
tently employed more time than students using UniMod in all the experiments

On the Impact of State-based Model-Driven Development on Maintainability 29

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD

0

100

200

300

400

Java only UniMod Java only UniMod Java only UniMod Java only UniMod Java only UniMod
Treatment

To
ta

lT
im

e

Maintainers'
SE Experience

BS

MS

PhD

Fig. 13 Boxplot of TotalTime vs. Treatment per Experiment

of the family. However, the differences are statistically significant only for
UniGE-BS2 and UniGE-BS3 as indicated in bold in Table 10 (we remind that
the significance level of the test after the Bonferroni correction is 0.016). There-
fore, we cannot reject the null hypothesis H0b for UniGE-BS1 and UniGE-
MS only. The effect size is large for the three significant experiments and for
PoliTO-PhD, medium for UniGE-BS1, and small for UniGE-MS.

Looking at each maintenance task in each experiment, we can find 4 cases
(out of 20) where a statistically significant difference in Time is observed.
More in detail, we observed statistically significant differences in MT4 for
three experiments (except UniGE-BS1 and PoliTO-PhD), and for MT3 for
experiment UniGE-BS3.

A more comprehensive analysis that takes into consideration also the Main-
tainers’ SE experience as a cofactor can be conducted by means of a Permu-
tation test, whose results are shown in Table 11. This analysis highlights the
significant effect of Maintainers’ SE experience cofactor on the TotalTime vari-
able and the overall effect of the treatment. No interaction is observed between
Maintainers’ SE experience and treatment.

Table 11 Permutation test of TotalTime vs. Treatment and Maintainers’ SE experience

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 83049.86 41524.93 500000 <0.01
Treatment 1 39411.24 39411.24 500000 0.01
Maintainers’ SE experience:Treatment 2 6565.97 3282.98 30147 0.49
Residuals 195 877338.56 4499.17

4.2.3 H0c: Efficiency

Table 12 reports some descriptive statistics of TotalEfficiency variable, the
results of Mann-Whitney test, and the effect size. On the other hand, Figure

30 Filippo Ricca et al.

14 summarizes the distribution of the TotalEfficiency variable by means of
boxplots. As for the previous cases, observations are grouped by treatment
(Java only or UniMod) and shown partitioning by experiment location.

Table 12 Summary statistics for TotalEfficiency at Experiment level

Java only UniMod MW Cliff

Exp n mean sd n mean sd p-value d

UniGE-BS1 18 2.65 1.32 16 3.38 1.62 0.10 0.34
UniGE-BS2 20 2.05 0.91 20 4.48 1.69 <0.01 0.82
UniGE-BS3 26 1.96 1.28 27 4.10 3.00 <0.01 0.54
UniGE-MS 25 2.44 1.48 27 3.77 2.83 0.08 0.28
PoliTO-PhD 11 5.30 4.10 11 10.43 6.52 0.02 0.58

The boxplots show that students using UniMod outperform in terms of
efficiency students using code-centric programming in all the experiments of
the family. The differences are statistically significant for UniGE-BS2 and
UniGE-BS3 as indicated in bold in Table 12 (the significance level of the test
after the Bonferroni correction is 0.016). Therefore, we cannot reject the null
hypothesis H0c for PoliTO-PhD, UniGE-BS1, and UniGE-MS only. The effect
size is large for the two statistically significant experiments and PoliTO-PhD,
medium for UniGE-BS1, and small for UniGE-MS.

UniGE−BS1 UniGE−BS2 UniGE−BS3 UniGE−MS PoliTO−PhD

0

5

10

15

20

Java only UniMod Java only UniMod Java only UniMod Java only UniMod Java only UniMod
Treatment

To
ta

lE
ffi

ci
en

cy Maintainers'
SE Experience

BS

MS

PhD

Fig. 14 Boxplot of TotalEfficiency vs. Treatment per Experiment

Looking at each maintenance task in each experiment, we can find 4 cases
(out of 20) where a statistically significant difference is observed. They are:
MT3 for UniGE-BS2 and UniGE-BS3 and MT4 for UniGE-BS2 and UniGE-
MS.

A more comprehensive analysis that takes into consideration also the Main-
tainers’ SE experience as a cofactor can be conducted by means of a permuta-
tion test, whose results are shown in Table 13. This analysis highlights: (1) the

On the Impact of State-based Model-Driven Development on Maintainability 31

Table 13 Permutation test of TotalEfficiency vs. Treatment and Maintainers’ SE experi-
ence

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Maintainers’ SE experience 2 444.08 222.04 500000 <0.01
Treatment 1 238.74 238.74 500000 <0.01
Maintainers’ SE experience:Treatment 2 59.90 29.95 500000 0.01
Residuals 195 1283.93 6.58

Table 14 Summary statistics (as percentages) for the Post-Questionnaire without parti-
tioning for Experiment

Item Neg. Neut. Pos. KW p

PQa: The maintenance tasks were perfectly clear to me 5% 13% 82% 0.04

PQb: I had no problems understanding the Java code 21% 32% 46% 0.005

PQc: I had no problems understanding the UniMod models 7% 15% 78% 0.10

PQd: The provided documentation was useful and clear 7% 14% 79% 0.11

PQe: I found the exercise useful 5% 12% 83% 0.05

PQf: Change localization in the UniMod model is simpler
than in the code

2% 11% 87% 0.88

PQg: Modifying the UniMod model is simpler than modi-
fying the code

1% 15% 84% 0.16

significant effect of Maintainers’ SE experience cofactor on the TotalEfficiency
variable, (2) the overall effect of the treatment, and (3) an interaction between
Maintainers’ SE experience and treatment.

4.3 Analysis of Post-experiment Survey Questionnaire

The overall results from the post-questionnaires are summarized in Table 14.
The Table reports the proportions of negative, neutral, and positive answers.
In this summary we do not differentiate between strong and weak positive or
negative answers.

Question PQa concerns the overall design of the family of experiments. We
observe a high proportion of positive answers, 81.8%. Questions PQb through
PQd concern the issues encountered during the execution of the tasks. Here,
we observe a relatively low value for PQb – I had no problems to understand
the provided Java code – while PQc (77.8% positive answers) and PQd (78.8%
positive answers) confirm the clarity of UniMod models and of the provided
documentation, respectively. PQe concerns ethical issues, since each experi-
ment of the family represent a lab assignment within the regular schedule of a
course. We can confirm a high perceived usefulness of the assignment (82.8%).
Questions PQf and PQg focus on the usefulness of the UniMod models: Uni-

32 Filippo Ricca et al.

9%

7%

10%

4%

0%

82%

80%

70%

81%

92%

9%

13%

20%

15%

8%

45%

27%

15%

26%

8%

27%

33%

55%

30%

73%

27%

40%

30%

44%

19%

9%

27%

0%

4%

4%

55%

60%

90%

78%

88%

36%

13%

10%

19%

8%

18%

20%

0%

4%

4%

55%

73%

80%

78%

92%

27%

7%

20%

19%

4%

0%

13%

0%

7%

4%

73%

67%

95%

81%

88%

27%

20%

5%

11%

8%

0%

0%

0%

0%

8%

82%

87%

85%

96%

81%

18%

13%

15%

4%

12%

0%

7%

0%

0%

0%

91%

60%

90%

89%

85%

9%

33%

10%

11%

15%

PQa: The maintenance tasks were perfectly clear to me

PQb: I had no problems to understand the provided Java code

PQc: I had no problems to understand the provided UniMod models

PQd: The provided documentation was useful and clear

PQe: I found the exercise useful

PQf: Change localization in the UniMod model is simpler than in the code

PQg: Modifying the UniMod model is simpler than modifying the code

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

PoliTO−PhD

UniGE−BS1

UniGE−BS2

UniGE−BS3

UniGE−MS

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Unsure Agree Strongly Agree

Fig. 15 Detailed post questionnaire responses

On the Impact of State-based Model-Driven Development on Maintainability 33

Mod makes it easier to both locate the defects (86.9% positive answers) and
perform the changes (83.8%).

In addition, we looked at individual level of experiment and relative differ-
ences among experiments. The detailed results for each experiment, grouped
by question, are reported in Figure 15 using a diverging stacked bar chart [36].

In order to detect statistically significant differences between experiments
for any of the questions, we applied the Kruskal-Wallis test. Since the statis-
tical tests are applied to different features of the same participants (multiple
comparisons), a Bonferroni correction is necessary to keep the familywise er-
ror rate under control. For this reason, we will consider significant a difference
only if p-value < 0.007119. The Kruskal-Wallis p-values are reported in the
rightmost column of Table 14 with statistically significant results highlighted
in bold. We observe that only for PQb the difference is significant.

5 Discussion

5.1 Discussion of Results

Concerning the general distributions of the variables we can observe that:

– TotalCorrectness is highly skewed and compressed against the maximum
value. This is probably due to the fact that the tasks were easy enough to
be completed within the allowed total time (three hours and half for each
lab).

– TotalTime is log-normal at experiment level, though not at change request
level.

– TotalEfficiency is log-normal at experiment level, though not at change
request level.

All the three dependent variables differ significantly among the experiments
of the family, but such difference seems to be also explainable in terms of
Maintainers’ SE experience. More in details, for TotalCorrectness, Experiment
apparently explains more variation than the Maintainers’ SE experience (see
Table 5), on the contrary for TotalTime is true the opposite (see Table 6).
Finally, for TotalEfficiency the Experiment is not able to explain anything
that is not already explained by Maintainers’ SE experience (see Table 7).

As far as the hypotheses are concerned the results show:

– The treatment has no significant effect on the correctness measured as
TotalCorrectness. Maintainers’ SE experience has a significant effect even
when accounting for the other effects.

– The usage of a State-based Model-Driven Development (SbMDD, see Sec-
tion 6) approach and a tool, such as UniMod, has a significant effect on
the time to complete the tasks in two out of five experiments. Maintainers’
SE experience also has an effect, independent from the treatment.

19 0.05 divided by the number of comparisons, i.e., 7.

34 Filippo Ricca et al.

– The treatment has a significant effect also on efficiency to conduct the tasks
in two out of five experiments. We observe a combined effect (interaction)
of Maintainers’ SE experience and Treatment as shown in Table 7 and
Figure 16.

2

3

4

5

6

7

Java only UniMod
Treatment

To
ta

lE
ffi

ci
en

cy
 (

m
ed

ia
n)

Maintainers'
SE Experience

BS

MS

PhD

Fig. 16 Interaction plot of TotalEfficiency vs. Treatment and Maintainers’ SE experience

Focusing on efficiency, it is interesting to quantify the practical effect of the
treatment. For this purpose, we fit a linear model, including Maintainers’ SE
experience and Treatment as predictors (independent variables) and Efficiency
as the outcome (dependent variable). As it is customary in this kind of context,
the categorical variable Maintainers’ SE experience with three levels, has been
transformed into a pair of mutually exclusive binary variables: MS and PhD
whose values can be mapped into the levels as shown in Table 15. Concerning
the Treatment, it has been mapped to a binary variable UniMod ; value 0
corresponds to treatment “-” (Java only) and value 1 corresponds to “+”
(UniMod).

Table 15 Mapping of MS and PhD to Maintainers’ SE experience levels

PhD
0 1

MS
0 BSc PhD
1 MSc –

The resulting equation is (the coefficients in bold are statistically signifi-
cant):

Efficiency = 2.18 + (0.25 ·MS) + (3.12 · PhD) + (1.86 ·UniMod)+
(−0.52 ·UniMod ·MS) + (3.27 ·UniMod · PhD)

(2)

On the Impact of State-based Model-Driven Development on Maintainability 35

We observe that:

1. using a SbMDD approach, such as UniMod (vs. code-centric programming)
provides an increment of 85% over the mean efficiency — computed con-
sidering the intercept (2.18) as base value and the UniMod coefficient as
increment (1.86);

2. benefits of a SbMDD approach are relatively small (3/5 circa) compared
to those provided by a higher Maintainers’ SE experience (i.e., PhD versus
bachelor students), that corresponds to an increment of 140% of the mean
efficiency;

3. the Maintainers’ SE experience has a sort of multiplicative effect; the con-
temporary presence of a high SE experience (PhD) and of a SbMDD ap-
proach brings an additional 150% improvement. In practice, UniMod al-
most doubles the efficiency, but in presence of a higher experience the
efficiency is three times higher.

Concerning the post-questionnaires, the results substantially confirm the
results of the family of experiments. UniMod artifacts are easier to understand
than Java code (PQc vs. PQb) and UniMod makes it easier to both locate the
defects (PQf) and perform the changes (PQg). Moreover, the goodness of
the experimental procedure and material is shown by the high percentages of
positive answers obtained for PQa and PQd, closed to 80%. Finally, the high
percentages of positive answers for PQe highlights the usefulness of the family
of experiments from a pedagogical and ethical point of view.

Considering the only post-experiment question showing a significant dif-
ference among experiments, PQb, we have to highlight that only the Master
students from the UniGE-MS experiment claimed to have had a few problems
in understanding the Java code (see Figure 15) while the other students were
more pessimistic about this question. The most negative about this question
were the PoliTO-PhD students. We speculate that this result is attributable to
the following two facts: a) Master students in Computer Engineering had the
best level of knowledge on Java programming (see Section 3.1) and were the
more trained in development of systems and b) some PoliTO-PhD students
were, probably, rusty with Java.

5.2 Implications

We adopted a perspective-based approach to judge the practical implications
of our study, taking into consideration the practitioner/consultant (simply
“practitioner”, from here on) and researcher perspectives suggested by [37]:

– Using a SbMDD approach, such as for example UniMod, instead of code-
centric programming yields, during maintenance activities, an average im-
provement in term of developers’ efficiency of about 85% for all the cate-
gories of students. This result is relevant for the practitioner. The question
of whether (or not) to adopt SbMDD approaches to reduce maintenance
costs has so far been few investigated through controlled experiments.

36 Filippo Ricca et al.

Thus, the contribution of our family of experiments is one of the first
empirical evidence that in this context some benefits exist. This result is
relevant from the researcher perspective since our study poses the basis for
future work.

– Using a SbMDD approach induces no additional time burdens w.r.t. code
centric programming. Indeed, the usage of UniMod reduces the mainte-
nance time for each kind of participants, with no significant impact on
correctness of the executed tasks. Also this result is relevant for the prac-
titioner and the researcher.

– The benefits deriving from adopting a SbMDD approach are appreciable
for all categories of developers (although to varying degrees depending on
SE experience, see next point). This result is practically relevant for the
industry: developers with different profiles and different Maintainers’ SE
experience can all benefit from the usage of a SbMDD approach. This
aspect is clearly relevant also for the researcher.

– The Maintainers’ SE experience has a sort of multiplicative effect. In prac-
tice, using a SbMDD approach almost doubles the developers’ efficiency,
but in presence of a higher SE experience the efficiency is three times
higher. This result is particularly relevant for the practitioner interested to
introduce a SbMDD approach in his/her company.

– The effect of adopting a Model-driven approach in maintenance scenarios
has been rarely empirically assessed. This is relevant for the researcher,
who could be interested in assessing why a SbMDD approach reduces the
maintenance time with no significant impact on correctness. Our family of
experiments poses the basis for this kind of investigations.

– The study tests only one of claimed benefits of MDD approaches (and as
a consequence of the SbMDD approaches), i.e., improvement in maintain-
ability. This is relevant for the researcher, who could be interested in testing
other claimed advantages of MDD, such as improvement in productivity,
portability, and interoperability.

– The study is focused on desktop applications for simulating a smart traffic
light system and a mobile phone payment terminal. From the researcher
perspective, the effect of a SbMDD approach on different type of applica-
tions represents a possible future direction.

– Even if the maintenance tasks considered in this study belongs to different
categories (enhancive, reductive, and corrective tasks [27]) we designed the
experiment not having in mind a specific categorization of maintenance
tasks, so the individual contribution of each category has not been stud-
ied. A work devoted to explicitly study this aspect is needed. This is of
particular interest for the researcher.

– We considered here models developed with UniMod, i.e., a SbMDD ap-
proach. Using different MDD approaches could lead to different results.
This aspect is relevant for practitioners, interested in understanding the
best (or most suitable for her/his company) MDD tool, and researchers,
interested in investigating if and why a different approach should affect
maintainability.

On the Impact of State-based Model-Driven Development on Maintainability 37

– The software projects selected in this family of experiments are small-sized
but realistic. We have no evidence whether and how the achieved results
could scale up to large industrial projects. Starting from the evidence pro-
vided in our work, further empirical studies devoted to explicitly study
this aspect can be planned. This is of interest for the practitioner and the
researcher alike.

– The switch to a MDD process requires a complete and radical process
change in an interested company. This consideration is extremely relevant
for the practitioner.

– The adoption of MDD approaches should also consider the costs (e.g.,
training and cost of supporting tools) and problems for its introduction
and usage in a company. This aspect, not considered in this paper but
studied in [2], is of particular interest for the practitioner. In fact, it would
be crucial knowing whether the additional cost needed to introduce and
use a MDD tool is adequately paid back by the improved maintainability.

– The diffusion of a new technology/approach is made easier when empir-
ical evaluations are performed and their results show that such a tech-
nology/approach solves actual issues [38]. This is why the results of our
family of experiments could increase the diffusion of State-based MDD in
the software industry. This is of particular interest for the practitioner.

5.3 Threats to Validity

This section discusses the threats to validity that could affect our results:
internal, construct, conclusion and external validity threats [15].

Internal validity threats concern factors that may affect a dependent vari-
able (in our case, TotalCorrectness, TotalTime, and TotalEfficiency). Since
the students had to participate in two labs (four maintenance tasks each), a
learning/fatigue effect may intervene. However, the students were previously
trained and the chosen experimental design, with a break between the two
labs, should limit this effect. Moreover, a two-way Permutation test was used
to study the influence of the Lab order on the dependent variables TotalTime
and TotalEfficiency (see Tables 19 and 20 in the Appendix), for which no
significant effect was found in all the experiments of the family. For this rea-
son, we can exclude a learning/fatigue effect. An additional threat concerns
the specific applications used for the experiment; we went through the two
systems and found no specific features that could bring any advantage to ei-
ther UniMod or Java only. The possibility of developing the two experimental
objects by ourselves was ruled out for several reasons. The main reason was
because we wanted to avoid any bias linked to our expectations and skills (we
detail it below). As described in Section 3.2, we believe that the best choice
would have been finding two applications for which both versions (i.e., Uni-
Mod and Java only) were available. Given that (a) this was not possible (we
did not find any application available in both versions) and (b) we were much
more confident in Java development than in UniMod, we chose to select two

38 Filippo Ricca et al.

existing UniMod applications and then developing by ourself the correspond-
ing Java only versions. Indeed, starting from existing UniMod applications has
allowed us to create the corresponding “Java only” versions that, in our opin-
ion, have a good quality level (provided we judge our own Java programming
skills as fairly good); on the other hand, since we were not experts of Uni-
Mod development, in the case we would have chosen to develop from scratch
the UniMod versions, we would ran the risk of introducing a confounding fac-
tor in the experiment due to poor/low quality UniMod implementations (i.e.,
implementations that cannot be considered at the same level w.r.t. the Java
ones).

Another possible threat lies in the two hours training (see Section 3.1)
that have been more focused on UniMod rather than Java. However, this is
reasonable given that all the participants attended at least a course about Java
programming. Finally, another threat to validity concerns the possible different
level of expertise of the participants with respect to the two treatments (i.e.,
UniMod and Java only). Clearly, participants were more familiar with Java
since they attended (at least) one Java programming course. However, we
believe that with our two-hours training session the participants were able to
reach an adequate UniMod proficiency, at least for what concerns the tasks to
perform during the experiment.

Construct validity threats concern the relationship between theory and ob-
servation. They are mainly due to how we measure the capability of a subject
to execute a maintenance task. Thus, this threat is related to how correct-
ness and time were measured; we do not mention efficiency because it is a
derived measure. The tasks were chosen to be as representative as possible
of realistic maintenance tasks. Also, the measurements we conceived — test
cases to assess maintenance tasks correctness — are as objective as possible.
The correctness of each maintenance task was assessed by executing a man-
ually created acceptance test suite and giving a score from 0 to 4 (for each
maintenance task), according to the number of test cases passed. It is possible
that the used test suite does not perfectly measure the quality of the main-
tenance tasks implementation. It was built to test only the correct execution
of the maintenance tasks. For example, for the MT1 of Telepay (see Table 3)
we built only a test case testing the reverse order of the phone number. The
test cases we used cover only the portions of code we asked to modify in the
maintenance tasks. Code not directly impacted by the change has not been
tested. The time needed to perform a task was manually recorded by the sub-
jects. This may have led to inaccuracies and therefore to an instrumentation
effect. Our previous experiences [39] showed, however, that automated time
recording can also lead to inaccuracies. Therefore, for the sake of simplicity,
we decided to adopt manual time recording. In addition, we notice that the
observed effects could be due to two distinct aspects of MDD: (i) the capabil-
ity of generating code from the model, or (ii) the documental feature of the
model. With the design we adopted it is not possible to discriminate the effects
of those two aspects. We speculate that a purely documental non-executable

On the Impact of State-based Model-Driven Development on Maintainability 39

model is more likely to become quickly out-of-date. In such a case, the model
is of little help to the comprehension, if not even it becomes a hurdle.

Threats to conclusion validity concern issues that may affect the ability
of drawing a correct conclusion. They can be due to the sample size of the
family of experiments (100 participants in total) that may limit the capability
of statistical tests to reveal any effect and to the chosen statistical tests. In
the family of experiments, we chose to use non parametric tests for testing the
effect of the main factor (Mann Whitney U test, Kruskal-Wallis test and Cliff’s
delta effect size) due to the size of the sample and because we could not safely
assume normal distributions [26]. Similarly, the analysis of co-factors has been
performed using permutation test, which is a non-parametric alternative to
ANOVA and does not require data to be normally distributed as ANOVA does.
Post experiment questionnaires, mainly intended to get qualitative insights,
were designed using standard structure and scales [40].

Threats to external validity can be related to: (i) the choice of simple sys-
tems as objects and (ii) the use of students as experimental subjects. There are
two threats concerning the objects of the experiment: — 1) the first is related
to the technique used for the construction of the Java versions of Svetofor and
Telepay starting from the UniMod projects. We applied a standard approach
to implement state machines in Java (in practice, we used the nested switch
strategy [21]) but we cannot be sure that changing the implementation (e.g.,
using the State pattern [21]) would not affect the outcome of the family of
experiments. However, since the state machines of our objects are small, we
expect that the results would not be changed too much in case one replaces the
nested switch implementation with the State pattern. Usually, a difference be-
tween the two implementations is appreciated only with large state machines.
We plan to verify this as part of our future work. — 2) the second pertains
to the size of the state machines contained in the applications used in the
experiment. The size is suitable for the time allotted to the experiment but
is significantly smaller than most industrial models. It is possible that some
phenomena do appear only as the size scales up and thus they are not visible
in our experiment. For instance, it is possible that beyond a given size the
complexity of the model makes it incomprehensible and the advantage over
the code-centric approach is reduced or even reversed. A similar phenomenon
has been observed in [24]. We speculate that when state models are concerned
that phenomenon is less likely to occur; the reasons being that the state ma-
chine formalism is much easier than the Conallen notation used in [24] and the
corresponding Java code is fairly complex. Nevertheless, at the current stage
we have no evidence about this issue, so further experiments are required.

As far as the participants are concerned, we agree on the fact that it is
more interesting to experiment with industrial developers than students, and
we are also aware that the expertise of students could be far from that of pro-
fessionals. However, finding professionals available to conduct a demanding
experiment as we designed is not simple. Moreover, this threat was at least
mitigated: (a) by considering students with different levels of education and
(b) by performing a co-factor analysis by SE experience. Finally, we do not

40 Filippo Ricca et al.

expect the absolute performance of students being at the same level of profes-
sionals, but we expect to be able to observe a similar improvement trend with
UniMod (or maybe better whether our speculation about SE experience will
be verified) as suggested by studies comparing the performance of students vs.
professionals, e.g. [41] and [42]. Further controlled experiments with larger sys-
tems and more experienced developers (i.e., industrial developers) are needed
to confirm or contrast the obtained results. Another threat to external validity
is that the results of our family of experiments are only valid for SbMDD ap-
proaches/tools and rather different results could be obtained with other MDD
approaches/tools. In particular, this can be true if the chosen MDD tool is
not UML based (as for example Portofino20) or if it considerably differs from
UniMod (as for example BridgePoint or AndroMDA that are not designed for
implementing automata-based OO programs). An additional threat to the ex-
ternal validity is represented by the features of the maintenance tasks carried
on during the experiment. Although we do not think that the maintenance
tasks used in our experiment are not realistic, they pose two different threats:
(i) they might cover only a subset of a realistic set of tasks that could happen
in industrial settings; (ii) even if representative of a real task, in the context
of larger models they could trigger different comprehension and localization
processes. In both cases we do not possess any evidence about whether they
represent concrete threats to the validity of our conclusions. We definitely need
further studies in this direction.

6 Related Work

The idea of using state-based graphical representations of systems as basis for
generating the corresponding executable code emerged many years ago. For
instance, the visual language Argos [43] has been proposed for programming
reactive systems (i.e., systems in which the interactions with an environment
are the prominent aspect). It is a language based on automata, with a syn-
tax similar to that of Statecharts [44]. A graphical editor has been developed
for Argos programs, as well as, a compiler allowing to generate executable
code. Another example from the SbMDD category of tools is MathWorks
Stateflow21, an industrial-grade control logic tool used to model and simu-
late combinatorial and sequential decision logic based on state machines and
flow charts. Stateflow is a mature tool, whose Statecharts-like language seman-
tics has been defined (both denotational [45] and operational [46]) and that
has been widely adopted both in the industry and in the academy (on May
2017, Google scholar returns 298 article entries when searching for the specific
keyword “MathWorks Stateflow”). With Stateflow, similarly to UniMod, the
developer has to define a model containing the state machine(s) representing
the behaviour of the software system. Then, the developer can generate auto-

20 http://portofino.manydesigns.com/en
21 http://www.mathworks.com/products/stateflow/

On the Impact of State-based Model-Driven Development on Maintainability 41

matically from the model the corresponding C or C++ code using MathWorks
Simulink Coder22.

In recent years, several researchers (e.g., [47,48,39,49]) conducted empiri-
cal investigations to assess the costs and benefits of using UML documentation
during the development of software systems. On the other hand, only a few
studies [7,9,10,50,11] faced the problem of assessing the benefits from adopt-
ing MDD approaches on software development and maintenance (the lack of
industrial evidence of the benefits is still one of the major current problems
in model-driven engineering [3]). Finally, we report some recent surveys con-
ducted to investigate the usage of UML and model-driven approaches [2,5,51,
50].

6.1 Effects of the UML Documentation

Arisholm et al. [47] reported on two experiments with students aimed to un-
derstand whether models help to make quicker and better changes to existing
systems. The subjects in the treatment group were provided with UML doc-
umentation (in particular a use case diagram, sequence diagrams for each use
case, and a class diagram), while the subjects in the control group executed
the same tasks without UML documentation. Results show that using UML
documentation helps in reducing the time required to make code changes, but
when including also the time necessary to modify the diagrams, no savings in
effort are visible. On the contrary, in terms of functional correctness of the
changes, results indicate that using UML has a significant, positive impact on
the most complex tasks.

Dzidek et al. [48] presented an experiment with professional developers to
investigate the impact of using UML during the maintenance of a real system.
The subjects in the treatment group worked with a UML-supported IDE, while
the subjects in the control group executed the same tasks without UML. The
main result of the experiment is that the subjects in the UML group had,
on average, a statistically significant 54% increase in the correctness of the
changes without impact on the time.

Both the aforementioned experiments [47,48] treat only the more extreme
cases: no UML documents vs. UML documents perfectly aligned with the code.
Differently, Leotta et al. [39], investigated the effect of two different variants
of technical UML documentation during the execution of a maintenance task
scenario: one with a better alignment w.r.t. code and the other less accurate.
Results indicate a benefit of the 15% in terms of efficiency (computed as num-
ber of correct tasks per minute) when a more accurate UML documentation
is used.

Table 16 reports a summary of the works: Arisholm et al. [47], Dzidek et
al. [48], and Leotta et al. [39].

Anda et al. [49] described a qualitative case study aimed to identify the
benefits as well as the difficulties (and their causes) resulting from the in-

22 http://www.mathworks.com/products/simulink-coder/

42 Filippo Ricca et al.

Table 16 Effects of the UML Documentation: Summary of the considered works

Study Kind Treatments Findings

Arisholm et al. [47] Exp UML vs. No UML UML ⇒ – time required,
+ functional correctness

Dzidek et al. [48] Exp UML vs. No UML UML ⇒+ 54% correctness,
no impact on time

Leotta et al. [39] Exp
UML More Aligned

vs.
UML Less Aligned

More
Aligned

⇒+ 15% efficiency

troduction of the UML-based development in a large international project
with 230 system developers, testers, and managers. Case study participants
reported several benefits due to the adoption of the UML-based development
like, for instance, improvements with traceability from requirements to code
and development of test cases as well as in communication and documentation.
On the other hand, there were also cons like the need for adequate training.

These works are substantially different from ours, given that all the partic-
ipants followed a conventional code-based software development/maintenance
process and UML models are used only for documentation purposes. However,
it is interesting to note that, as we found in our family of experiments, the
participants’ SE experience consistently has a positive effect when adopting
high level documentation (e.g., UML documents). Indeed, if we compare [47]
with [48] it emerges that the time spent on updating the UML documents
decreases from the 30-35% required by the students to the 13% required by
the professional developers. Anda et al. [49] found that one of the factors that
reduce the positive effects of adopting a UML-based development approach is
the lack of an adequate training. Indeed, the participants to the case study,
even if well-qualified developers, were almost novices at modelling with UML.

6.2 Benefits of Model-Driven Approaches

On a different front, few empirical studies report on experiences related to the
adoption of MDD approaches [7,9,10,11]. In that context, the studies more
closely related to ours are [7,9].

Mart́ınez et al. [7] studied the impact of Model-driven Engineering (MDE)
approaches on the maintainability of web applications by means of an exper-
imental study conducted with 44 participants. In particular, they compared
WebML [52], a MDE methodology, with a code-based methodology based on
PHP. The dependent variables are: effectiveness, efficiency, perceived ease of
use, and perceived usefulness. Results show that subjects performed better
with WebML than with PHP in terms of effectiveness and efficiency (i.e., ex-
ecution time, for which we obtained a similar result), although they showed
a preference towards implementing maintenance tasks directly on the source

On the Impact of State-based Model-Driven Development on Maintainability 43

code. Besides the fact that, in our study, we employed UML diagrams (i.e.,
class and state machine diagrams) while Mart́ınez et al. employed WebML,
there are two other notable differences between our study and theirs: (1) they
measured the correctness of the maintenance tasks on the modified WebML
models while we measured the correctness executing the UniMod models and
using a test suite; (2) the context (Desktop in this study vs. Web applications
in [7]).

In a subsequent study, Mart́ınez et al. [8] further analysed the impact of
an MDE approach on the maintainability of web applications by comparing
the model-driven and the code-centric paradigms. In particular, the authors
compared the performance and satisfaction of software maintainers adopting
two different development approaches, OOH4RIA [53], a MDD approach, and
a code-centric approach based on Visual Studio .NET and the Agile Unified
Process. The participants of the study were 27 master students. Each subject
was asked to perform 10 maintainability tasks, five with the code-centric ap-
proach and five with the MDD one. The authors reported that the adoption of
OOH4RIA greatly improves the actual performance of subjects carrying out
maintainability tasks, while the satisfaction-related variables throws mixed re-
sults (i.e., some reveal significant differences among the methods while others
not).

Papotti et al. [9] performed an experiment aimed at evaluating the usage of
mechanisms for code generation from models in the software development. As
in our family of experiments, the subjects were students (29 from the third and
fourth years of Computer Science and Computer Engineering courses). The
experiment aimed at analysing the effort required for implementing the CRUD
(Create, Retrieve, Update, Delete) functions for a web application starting
from UML models (i.e., class diagrams) of the application entity classes. In
particular, the software development was performed: (1) manually (based on
the classic software development life-cycle), and (2) by using code generation
from models. Results show that the subjects spent less time (about 91%) to
complete the implementation when following the code generation approach
(on average 11 minutes) than when following the manual coding approach (on
average 2 hours). The authors report that such a considerable advantage of the
code generation approach is justified by the model-to-code transformations,
that are able to automatically generate a substantial amount of source code
from the predefined models. The two most relevant differences between our
study and theirs are: (1) they focus the study on development activities, we
focus on maintenance tasks, and (2) the context (Desktop in this study vs.
Web applications).

Hovsepyan et al. [10] focused on aspect-oriented (AO) modelling and in-
vestigated the effect on maintainability of two alternatives for generating
code from aspect-oriented models. More in detail they compared: (1) an all-
aspectual process, preserving the AO paradigm throughout the system devel-
opment stages (i.e., full adoption of the AO paradigm), where the AspectJ
implementations are automatically generated from domain specific models,
and (2) an aspect hybrid process, shifting from AO models to OO code (e.g.,

44 Filippo Ricca et al.

useful for preserving the OO know-how of the development team, if any),
where the Java object-oriented implementations are automatically generated
from the same models. The experiment involved 10 post-graduate researchers
that were asked, similarly to our family of experiments, to perform two main-
tenance tasks (i.e., functionality addition and improvement) on two selected
applications (a toll payment system and a pacemaker system). Results show
that the all-aspectual process often provides shorter maintenance cycles. The
main difference between our study and the one of Hovsepyan et al. [10] is that
we compared a model-based software development process with a conventional
code-centric one, while they compared two different alternatives for generating
code from aspect-oriented models.

Kapteijns et al. [11] presented a case study in which a small application
is developed with and without MDD. In practice, a small middleware appli-
cation was rebuilt using MDD and the time needed was then compared to
the development time of the original application. The authors report that ap-
proximately the 70% of the required functionality have been generated from
models while the remaining parts, such as complex graphical user interfaces,
have been manually created after the generation. The authors report that de-
veloping the legacy application took 42 days while with MDD the application
was rebuilt in only 16 days. In conclusion, the authors report that with MDD
there was an increase of productivity of about 2.6 times.

Table 17 reports a summary of the works: Mart́ınez et al. [7], Mart́ınez et
al. [8], Papotti et al. [9], Hovsepyan et al. [10], and Kapteijns et al. [11].

Table 17 Benefits of Model-Driven Approaches: Summary of the considered works

Study Kind Treatments Findings

Mart́ınez et al. [7] Exp WebML vs. Code WebML ⇒+ effectiveness,
+ efficiency

Mart́ınez et al. [8] Exp
OOH4RIA vs.
Code

OOH4RIA ⇒+
performance on
maintainability
tasks

Papotti et al. [9] Exp
Code Generation
Yes vs. No

CG Yes ⇒ – 91% time

Hovsepyan et al. [10] Exp
AO paradigm
Full vs. Hybrid

Full ⇒ often shorter
maintenance cycles

Kapteijns et al. [11]
Case
Study

MDD vs.
No MDD

MDD ⇒ 2.6x productivity

On the Impact of State-based Model-Driven Development on Maintainability 45

Table 18 Usage of UML and Model-Driven Approaches: Summary of the considered works

Study N Survey Findings

Torchiano et al. [2] 155 Modelling ⇒ better: design support, documentation,
maintenance, software quality

MD ⇒ better: standardization, productivity,
platform independence

Problems:
effort, limited usefulness, lack of compe-
tencies and supporting tools

Agner et al. [5] 209 Facts:

45% of the participants use UML
23.1% of them know/use MD approaches
Modelling is used for documentation and
design

MD ⇒ + productivity/portability

Liebel et al. [51] 112 Facts:
Focussed on Embedded Systems Domain
Model-based Engineering is widespread
Models are the key artifacts

Hutchinson et al. [50] 250 Facts: 85% of respondents make use of UML
MDE ⇒ + productivity and maintainability

6.3 Usage of UML and Model-Driven Approaches

Torchiano et al. [2] presented the findings of a survey on the model-driven state
of practice in the Italian software industry with 155 software professionals. The
survey was performed to investigate: (1) the relevance of software modelling
and model driven techniques in the Italian industry, (2) the attainable benefits
from such techniques, and (3) the problems affecting the adoption of modelling
and model driven techniques. Results show that: (1) software modelling and
model driven techniques are very relevant in the Italian industry in terms of
adoption spread, (2) the adoption of simple modelling brings common bene-
fits (better design support, documentation improvement, better maintenance,
and higher software quality), while model driven techniques make it easier to
achieve: improved standardization, higher productivity, and platform indepen-
dence, (3) among the identified problems, some hinders its adoption (too much
effort required and limited usefulness) others prevents it (lack of competencies
and supporting tools).

Agner et al. [5] presented the findings of a survey aimed at investigating
the usage of UML and model-driven approaches in the context of the de-
sign of embedded software in Brazil with 209 participants. Concerning mod-
elling, results show that, in general, the value of the modelling is perceived by
most of the participants even though little used. UML is the dominant lan-
guage for modelling since 45% of the 209 participants use UML and the use
of modelling tools is widespread. The most relevant problems hindering the
adoption of UML includes: the lack of skills, the lack of coherent tools, and the
strict time requisites applicable to software development projects. The authors

46 Filippo Ricca et al.

found that: (1) modelling is primarily used for documentation and design but
scarcely used for code generation, (2) model-centric approaches are currently
not very popular, and (3) software engineers who work extensively on models
are the more experienced ones. Concerning model-driven approaches, results
show that 23.1% of the respondents know and use them, partially or not.
Model-driven approaches are mainly perceived beneficial in terms of produc-
tivity and portability. However, MDE is currently far from achieving a mature
level, considering its recent introduction in the software development.

Liebel et al. [51] carried out a survey on the use of model-based engi-
neering in the embedded systems domain. The authors collected quantitative
data from 112 participants and from the results emerges that model-based
engineering is widespread in the embedded domain. Indeed, in this domain,
models are the key artifacts of the development processes (e.g., they are used
for simulation and code generation) and, thus their usage is not only limited
to documentation purposes. In the embedded systems domain, models are also
used for behavioural and structural consistency checking, as well as for test
case generation, traceability, and timing analysis.

Hutchinson et al. [50] presented the results of an empirical study on the
assessment of MDE in industry, having the goal of understanding its success
or failure reasons. This work used three forms of investigation: questionnaires,
interviews, and on site observations, having as target practitioners, MDE pro-
fessionals, and companies practising MDE, respectively. The main results of
that work can be summarized as follows: almost all the respondents believe
that the use of MDE improved productivity and maintainability. It is inter-
esting to note that, from the questionnaires emerges that almost 85% of re-
spondents make use of UML and that Class diagram and State Machine (the
UML diagrams employed by UniMod) are respectively the first and fifth most
used kind of diagrams (Class diagram and State Machine are among the most
known/used diagrams also according to two recent studies [19,20]).

Table 18 reports a summary of the works: Torchiano et al. [2], Agner et
al. [5], Liebel et al. [51], and Hutchinson et al. [50].

7 Conclusions and Future Work

In this paper, we have presented a family of five experiments, which involved
100 students (64 BS, 25 MS, and 11 PhD students; in groups sized 11 to 26
per experiment) having different levels of education, designed for assessing
the use of a specific implementation of executable UML (i.e., UniMod) as
an alternative to code-centric conventional programming. In particular, we
focused our attention on maintenance activities.

The results given in terms of artefacts correctness and time to accom-
plish the maintenance tasks indicate a reduction in time with no significant
impact on correctness, when UniMod is used instead of code-centric program-
ming. Using the UniMod-MDD approach/tool during maintenance activities
provides an increment of in terms of maintainers’ efficiency. Moreover, we dis-

On the Impact of State-based Model-Driven Development on Maintainability 47

covered that the Maintainers’ SE experience has a sort of multiplicative effect.
In practice, using the UniMod-MDD approach/tool almost doubles the devel-
opers’ efficiency, but in presence of a higher SE experience the efficiency is
three times higher.

Future work will be devoted to replicate this family of experiments in dif-
ferent settings. We would like to understand whether the maintenance time
reduction deriving from the use of UniMod is preserved also for other cat-
egories of subjects (e.g., industrial developers), for other domains (e.g., Web
applications) and for larger systems/tasks. In addition, we would like to repeat
this empirical study using other MDD tools (e.g., WebRatio or BridgePoint)
designed to support other kinds of models different from state machines.

References

1. T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Development: Technol-
ogy, Engineering, Management. John Wiley & Sons, 2006.

2. M. Torchiano, F. C. A. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Relevance,
benefits, and problems of software modelling and model driven techniques–a survey in
the Italian industry,” Journal of Systems and Software, vol. 86, no. 8, pp. 2110–2126,
2013.

3. G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. Cheng, P. Collet, B. Combemale,
R. France, R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D. Stikkolorum,
and J. Whittle, “The relevance of model-driven engineering thirty years from now,” in
Proceedings of 17th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2014), ser. Lecture Notes in Computer Science, J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Springer, 2014, vol. 8767, pp.
183–200. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11653-2 12

4. J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-driven
engineering,” IEEE Software, vol. 31, no. 3, pp. 79–85, 2014.

5. L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simão, “A Brazilian survey
on UML and model-driven practices for embedded software development,” Journal of
Systems and Software, vol. 86, no. 4, pp. 997–1005, 2013.

6. A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc, 2003.

7. Y. Mart́ınez, C. Cachero, M. Matera, S. Abrahao, and S. Luján, “Impact of MDE
approaches on the maintainability of web applications: an experimental evaluation,”
in Proceedings of 30th International Conference on Conceptual Modeling (ER
2011). Berlin, Heidelberg: Springer-Verlag, 2011, pp. 233–246. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075144.2075168

8. Y. Mart́ınez, C. Cachero, and S. Meliá, “Empirical study on the maintainability
of web applications: Model-driven engineering vs code-centric,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1887–1920, 2014. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-013-9269-5

9. P. Papotti, A. do Prado, W. de Souza, C. Cirilo, and L. Pires, “A quantitative analysis
of model-driven code generation through software experimentation,” in Advanced
Information Systems Engineering, ser. Lecture Notes in Computer Science, C. Salinesi,
M. Norrie, and Ó. Pastor, Eds. Springer Berlin Heidelberg, 2013, vol. 7908, pp.
321–337. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-38709-8 21

10. A. Hovsepyan, R. Scandariato, S. Van Baelen, W. Joosen, and S. Demeyer,
“Preserving aspects via automation: A maintainability study,” in Proceedings of
5th International Symposium on Empirical Software Engineering and Measurement
(ESEM 2011). Washington, USA: IEEE CS, 2011, pp. 315–324. [Online]. Available:
http://dx.doi.org/10.1109/ESEM.2011.40

48 Filippo Ricca et al.

11. T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houet, and R. Barendse, “A Comparative
Case Study of Model Driven Development vs Traditional Development: The Tortoise
or the Hare,” in 4th European Workshop on “From code centric to model centric soft-
ware engineering: Practices, Implications and ROI” (C2M 2009). CTIT Workshop
Proceedings Series, 2009, pp. 22–33.

12. N. Melleg̊ard, A. Ferwerda, K. Lind, R. Heldal, and M. R. V. Chaudron, “Impact of in-
troducing domain-specific modelling in software maintenance: An industrial case study,”
IEEE Transactions on Software Engineering, vol. 42, no. 3, pp. 245–260, March 2016.

13. I. Sommerville, Software Engineering. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

14. V. Gurov, M. Mazin, A. Narvsky, and A. Shalyto, “Tools for support of automata-based
programming,” Programming and Computer Software, vol. 33, pp. 343–355, 2007.

15. C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in Software Engineering. Springer-Verlag Berlin Heidelberg, 2012.

16. A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments in software engi-
neering,” in Guide to Advanced Empirical Software Engineering. Springer, 2008.

17. F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini, and M. Torchiano, “Using
UniMod for maintenance tasks: An experimental assessment in the context of model
driven development,” in Proceedings of 4th International Workshop on Modeling in
Software Engineering (MiSE 2012). IEEE, 2012, pp. 77–83. [Online]. Available:
http://dx.doi.org/10.1109/MISE.2012.6226018

18. A. A. Shalyto and N. I. Tukkel, “SWITCH Technology: An Automated Approach to De-
veloping Software for Reactive Systems,” Programming and Computer Software, vol. 27,
pp. 260–276, 2001.

19. G. Reggio, M. Leotta, and F. Ricca, “Who knows/uses what of the UML:
A personal opinion survey,” in Proceedings of 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014), ser. Lecture
Notes in Computer Science, J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and
E. Insfran, Eds. Springer, 2014, vol. 8767, pp. 149–165. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11653-2 10

20. G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used UML
diagram constructs? A document and tool analysis study covering activity and
use case diagrams,” in Model-Driven Engineering and Software Development, ser.
Communications in Computer and Information Science, S. Hammoudi, L. F. Pires,
J. Filipe, and R. C. das Neves, Eds. Springer, 2015, vol. 506, pp. 66–83. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-25156-1 5

21. M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,
3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

22. F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, and C. A. Visaggio,
“Are Fit tables really talking?: a series of experiments to understand whether fit tables
are useful during evolution tasks,” in Proceedings of 30th International Conference on
Software Engineering (ICSE 2008). New York, NY, USA: ACM, 2008, pp. 361–370.
[Online]. Available: http://doi.acm.org/10.1145/1368088.1368138

23. M. Ceccato, M. Penta, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella, “A family
of experiments to assess the effectiveness and efficiency of source code obfuscation
techniques,” Empirical Software Engineering, vol. 19, no. 4, pp. 1040–1074, Aug. 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10664-013-9248-x

24. F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “How developers’
experience and ability influence web application comprehension tasks supported by UML
stereotypes: A series of four experiments,” IEEE Transactions on Software Engineering,
vol. 36, pp. 96–118, 2010.

25. M. Torchiano, G. Scanniello, F. Ricca, G. Reggio, and M. Leotta, “Do UML object
diagrams affect design comprehensibility? Results from a family of four controlled
experiments,” Journal of Visual Languages & Computing, vol. 41, pp. 10–21, 2017.
[Online]. Available: http://dx.doi.org/10.1016/j.jvlc.2017.06.002

26. H. Motulsky, Intuitive biostatistics: a non-mathematical guide to statistical thinking.
Oxford University Press, 2010. [Online]. Available: http://books.google.it/books?id=
R477U5bAZs4C

On the Impact of State-based Model-Driven Development on Maintainability 49

27. N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan, “Types of software
evolution and software maintenance,” Journal of Software Maintenance, vol. 13, no. 1,
pp. 3–30, Jan. 2001. [Online]. Available: http://dl.acm.org/citation.cfm?id=371697.
371701

28. R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2013, ISBN 3-900051-07-0.
[Online]. Available: http://www.R-project.org/

29. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 3, no. 52, 1965.

30. D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures (4th
Ed.). Chapman & All, 2007.

31. R. Baker, “Modern permutation test software,” In E. Edgington, editor, Randomization
Tests, Marcel Decker, 1995.

32. B. Wheeler, lmPerm: Permutation tests for linear models, r package version 2.0.
[Online]. Available: http://CRAN.R-project.org/package=lmPerm

33. R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical approach,
2nd ed. Lawrence Earlbaum Associates, 2005.

34. M. Torchiano, effsize: Efficient Effect Size Computation, 2015, r package version 0.5.5.
[Online]. Available: http://CRAN.R-project.org/package=effsize

35. H. Abdi, Bonferroni and Sidak corrections for multiple comparisons. Sage, Thousand
Oaks, CA, 2007.

36. R. Heiberger and N. Robbins, “Design of diverging stacked bar charts for likert scales
and other applications,” Journal of Statistical Software, vol. 57, no. 5, pp. 1–32, 4
2014. [Online]. Available: http://www.jstatsoft.org/v57/i05

37. B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung, F. Kurniawati,
M. Staples, H. Zhang, and L. Zhu, “Evaluating guidelines for reporting empirical soft-
ware engineering studies,” Empirical Software Engineering, vol. 13, pp. 97–121, 2008.

38. S. L. Pfleeger and W. Menezes, “Marketing technology to software practitioners,” IEEE
Software, vol. 17, no. 1, pp. 27–33, 2000.

39. M. Leotta, F. Ricca, G. Antoniol, V. Garousi, J. Zhi, and G. Ruhe, “A pilot
experiment to quantify the effect of documentation accuracy on maintenance tasks,” in
Proceedings of 29th International Conference on Software Maintenance (ICSM 2013).
IEEE, 2013, pp. 428–431. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2013.64

40. A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude Measurement.
London: Pinter, 1992.

41. M. Svahnberg, A. Aurum, and C. Wohlin, “Using students as subjects-an empirical
evaluation,” in Proceedings of 2nd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), October 2008, pp. 288–290.

42. D. G. Feitelson, “Using students as experimental subjects in software engineering
research - A review and discussion of the evidence,” CoRR, vol. abs/1512.08409, 2015.
[Online]. Available: http://arxiv.org/abs/1512.08409

43. F. Maraninchi and Y. Rémond, “Argos: an automaton-based synchronous language,”
Computer Languages, vol. 27, no. 1–3, pp. 61 – 92, 2001, visual Formal
Methods-VFM’99 Symposium. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0096055101000169

44. D. Harel, “Statecharts: a visual formalism for complex systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231 – 274, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0167642387900359

45. G. Hamon, “A denotational semantics for stateflow,” in Proceedings of the
5th ACM International Conference on Embedded Software, ser. EMSOFT ’05.
New York, NY, USA: ACM, 2005, pp. 164–172. [Online]. Available: http:
//doi.acm.org/10.1145/1086228.1086260

46. G. Hamon and J. Rushby, “An operational semantics for stateflow,” International
Journal on Software Tools for Technology Transfer, vol. 9, no. 5, pp. 447–456, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10009-007-0049-7

47. E. Arisholm, L. Briand, S. Hove, and Y. Labiche, “The impact of uml documentation
on software maintenance: an experimental evaluation,” IEEE Transactions on Software
Engineering, vol. 32, no. 6, pp. 365–381, June 2006.

50 Filippo Ricca et al.

48. W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical evaluation of
the costs and benefits of UML in software maintenance,” IEEE Transactions on
Software Engineering, vol. 34, no. 3, pp. 407–432, May 2008. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2008.15

49. B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
introducing UML-based development in a large safety-critical project,” Empirical
Software Engineering, vol. 11, no. 4, pp. 555–581, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10664-006-9020-6

50. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical assessment
of MDE in industry,” in Proceedings of 33rd International Conference on Software
Engineering (ICSE 2011). New York, USA: ACM, 2011, pp. 471–480.

51. G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assessing the
state-of-practice of model-based engineering in the embedded systems domain,” in
Proceedings of 17th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2014), ser. Lecture Notes in Computer Science, J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Springer, 2014, vol. 8767, pp.
166–182. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11653-2 11

52. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera, Design-
ing Data-Intensive Web Applications. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002.

53. S. Melia, J. Gomez, S. Perez, and O. Diaz, “A model-driven development for gwt-based
rich internet applications with ooh4ria,” in Proceedings of 8th International Conference
on Web Engineering (ICWE 2008), July 2008, pp. 13–23.

A Appendix

This appendix reports detailed analysis results. They are not essential to understand the
paper, though they provide additional information and complement the results provided in
the main body of the papers.

A.1 Detailed Hypotheses Testing

We report here the Heatmap graph concerning the hypotheses tested at the individual
maintenance task (MT) level. In particular, Figure 17 reports the p-values of the Mann-
Whitney tests; Figure 18 shows the Cliff’s delta values.

A.2 Influence of Lab Order

As mentioned in Section 5.3, we performed a set of two-way permutation tests to check the
effect of Lab order on the dependent variables. The results of the tests are presented in
Table 19 for TotalEfficiency, Table 20 for TotalTime, and Table 21 for TotalCorrectness.

The tests consistently show neither a main effect from the Lab order nor any interaction
with the experiment.

On the Impact of State-based Model-Driven Development on Maintainability 51

Detail Overall

 0.38 0.68 0.95 0.42

 1.00 0.34 0.16 1.00

 0.09 0.13 0.03 0.80

 1.00 0.98 0.32 1.00

 1.00 0.75 0.96 0.52

 0.72 0.86 0.39 0.03

 0.12 0.01 < 0.01 < 0.01

 0.80 0.03 < 0.01 0.01

 0.41 0.71 0.29 < 0.01

 0.48 0.60 0.36 0.03

 0.72 0.74 0.20 0.12

 0.19 0.06 < 0.01 < 0.01

 0.75 0.10 0.02 < 0.01

 0.52 0.59 0.18 < 0.01

 0.48 0.55 0.36 0.04

 0.62

 0.65

 0.09

 0.53

 0.70

 0.10

< 0.01

< 0.01

 0.08

 0.02

 0.10

< 0.01

< 0.01

 0.08

 0.05

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

TotalC
orrectness

TotalE
fficiency

TotalT
im

e

MT1 MT2 MT3 MT4 Tot
Maintenance Task

E
xp

er
im

en
t Mann−Whitney

test

Highly Significant

Significant

Non Significant

Fig. 17 Heat map of MW p-values

Table 19 Permutation test of TotalEfficiency vs. Experiment and Lab order

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Lab 1 6.73 6.73 51 1.00
Experiment 4 210.24 52.56 500000 <0.01
Lab:Experiment 4 6.38 1.60 11624 0.78
Residuals 982 3720.85 3.79

Table 20 Permutation test of TotalTime vs. Experiment and Lab order

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Lab 1 1196.21 1196.21 6487 0.61
Experiment 4 61762.18 15440.55 500000 <0.01
Lab:Experiment 4 6503.89 1625.97 27078 0.61
Residuals 982 2557659.83 2604.54

52 Filippo Ricca et al.

Detail Overall

0.06 −0.08 −0.01 0.15

−0.00 0.05 −0.10 −0.00

−0.11 0.18 0.25 0.03

−0.00 0.00 0.04 −0.00

−0.00 −0.07 0.02 0.14

0.08 0.04 0.18 0.50

0.28 0.46 0.48 0.62

−0.04 0.34 0.46 0.40

0.13 0.06 0.17 0.43

0.18 0.15 0.24 0.55

−0.07 −0.07 −0.28 −0.37

−0.24 −0.35 −0.50 −0.68

0.05 −0.26 −0.38 −0.49

−0.11 −0.09 −0.22 −0.42

−0.18 −0.16 −0.24 −0.55

0.10

−0.05

0.23

0.04

0.10

0.34

0.82

0.54

0.28

0.58

−0.33

−0.79

−0.58

−0.28

−0.51

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

PoliTO−PhD

UniGE−MS

UniGE−BS3

UniGE−BS2

UniGE−BS1

TotalC
orrectness

TotalE
fficiency

TotalT
im

e

MT1 MT2 MT3 MT4 Tot
Maintenance Task

E
xp

er
im

en
t

Cliff's d
Magnitude

large

medium

small

negligible

Fig. 18 Heat map of Cliff d

Table 21 Permutation test of TotalCorrectness vs. Experiment and Lab order

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Lab 1 6.60 6.60 51 1.00
Experiment 4 192.86 48.21 177642 0.05
Lab:Experiment 4 17.50 4.38 11057 0.94
Residuals 995 21465.51 21.57

