
Copyright:

© 2019 Springer Nature Switzerland

The final authenticated version is available online at:

https://doi.org/10.1007/978-3-030-29238-6_12

Hamcrest vs AssertJ: an Empirical Assessment of Tester

Productivity

Maurizio Leotta, Maura Cerioli, Dario Olianas, Filippo Ricca

Abstract:

Context. Extensive unit testing is worth its costs in terms of the higher quality of the final

product and reduced development expenses, though it may consume more than fifty percent

of the overall project budget. Thus, even a tiny percentage of saving can significantly

decrease the costs. Since recently competing assertion libraries emerged, we need empirical

evidence to gauge them in terms of developer productivity, allowing SQA Managers and

Testers to select the best.

Objective. The aim of this work is comparing two assertion frameworks having a different

approach (matchers vs. fluent assertions) w.r.t. tester productivity.

Method. We conducted a controlled experiment involving 41 Bachelor students. AssertJ is

compared with Hamcrest, in a test development scenario with the Java language. We

analysed the number of correct assertions developed in a tight time frame and used this

measure as a proxy for tester productivity.

Results. The results show that adopting AssertJ improves the overall tester’s productivity

significantly during the development of assertions.

Conclusions. Testers and SQA managers selecting assertion frameworks for their

organizations should consider as first choice AssertJ, since our study shows that it increases

the productivity of testers during development more than Hamcrest.

Digital Object Identifier (DOI):

https://doi.org/10.1007/978-3-030-29238-6_12

Hamcrest vs AssertJ: an Empirical Assessment of Tester
Productivity

Maurizio Leotta[0000−0001−5267−0602], Maura Cerioli[0000−0002−8781−8782], Dario
Olianas, Filippo Ricca[0000−0002−3928−5408]

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS)

Università di Genova, Italy
{name.surname}@unige.it

Abstract. Context. Extensive unit testing is worth its costs in terms of the higher
quality of the final product and reduced development expenses, though it may
consume more than fifty percent of the overall project budget. Thus, even a tiny
percentage of saving can significantly decrease the costs. Since recently competing
assertion libraries emerged, we need empirical evidence to gauge them in terms of
developer productivity, allowing SQA Managers and Testers to select the best.
Objective. The aim of this work is comparing two assertion frameworks having a
different approach (matchers vs. fluent assertions) w.r.t. tester productivity.
Method. We conducted a controlled experiment involving 41 Bachelor students.
AssertJ is compared with Hamcrest, in a test development scenario with the Java
language. We analysed the number of correct assertions developed in a tight time
frame and used this measure as a proxy for tester productivity.
Results. The results show that adopting AssertJ improves the overall tester’s
productivity significantly during the development of assertions.
Conclusions. Testers and SQA managers selecting assertion frameworks for their
organizations should consider as first choice AssertJ, since our study shows that it
increases the productivity of testers during development more than Hamcrest.

Keywords: Hamcrest · AssertJ · Empirical Study.

1 Introduction

In the last two decades, automated software testing has gained the spotlights of software
development. Indeed, starting from the agile revolution, tests have been an important
part not only of quality assessment, but of code development itself, with practices like
test first1, test driven development (see e.g. [3]) and behaviour driven development (see
e.g. [28]). Writing tests before developing the corresponding functionalities increases the
requirement understanding, reduces the number and impact of defects in final products,
and decreases the costs of bug fixing, letting them be spotted in the early phases of
development (see e.g. [19]). It provides also living documentation (see e.g. [1, 20]),
where tests clarify the expectations about the system and inherently document the current
version of the system if they pass. Finally, comprehensive test suites, used as regression
tests, let the system evolve with confidence that no undesired effects will take place.
1 http://www.extremeprogramming.org/rules/testfirst.html

2 M. Leotta et al.

Though many different types of functional testing exist, the more widespread2

among them is the basic unit testing, used to validate that each unit of the software
(a method/class in the context of object-oriented programming) performs as designed.
There is no doubt that extensive unit testing is worth its costs in terms of the higher
quality of the final product and reduced development expenses. However, as stated
in [11], “studies indicate that testing consumes more than fifty percent of the cost of
software development”. Thus, even small percentage savings on the testing process can
significantly improve the project budget.

The first standard step toward saving on the testing process is to automate it through
testing frameworks (e.g. JUnit or TestNG), which run the test method(s) and report
successes/failures to the testers. The expected results are described by assertions, that
are methods checking values (the result of the call under test, or the final status of some
part of the system) against given conditions, and raising an exception in case of failure.
Both testing frameworks and assertion libraries are currently a hot topic, with their
numerous (mostly open-source) development projects showing a high number of commit
and downloading, and their choice is far from obvious.

Nowadays, the most popular assertion libraries for the Java language are Hamcrest3

and AssertJ4. The former hit the market first, is more well-established, and still attracts
more attention, as for instance shown by Google Trend5, where for the period from
April 2018 to April 2019 on the average AssertJ scores forty-five and Hamcrest scores
seventy-three over a maximum of a hundred. AssertJ, on the other hand, has a more
active development community, provides more assertion methods out of the box, and
adopts a fluent style, based on the dot notation, which is supposed to make writing
assertions easier and the results more readable.

To investigate the claimed advantages of one of the frameworks w.r.t the other for
what concerns the productivity of assertion writing, we applied Evidence-Based Software
Engineering [13] to this context. In particular, we conducted a controlled experiment [27]
involving forty-one Bachelor students to compare their capabilities in writing assertions
in AssertJ and Hamcrest, taking into account both correctness and effort. We also devised
a method to select the most practically essential assertion methods, so to restrict our
experiment to writing tests involving those methods.

The paper is organized as follows: Section 2 briefly describes the assertion libraries
used in this study: AssertJ and Hamcrest. The selection process for singling out the
assertion methods more used in practice fills Section 3. The description of the empirical
study and the preliminary results are in Section 4 and 5 respectively. Finally, related
works are discussed in Section 6 while conclusions are given in Section 7.

2 Assertions: dot notation vs. matchers

JUnit6, being the leading unit test framework for Java programming7 is the natural
choice as reference testing framework for our experiment. Indeed, its most recent version,
2 https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
3 http://hamcrest.org/ 4 https://joel-costigliola.github.io/assertj/
5 https://trends.google.com/trends/explore?q=Assertj,Hamcrest 6 https://junit.org
7 https://redmonk.com/fryan/2018/03/26/a-look-at-unit-testing-frameworks/

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 3

JUnit 5, has built-in support for different assertion libraries, including those we want to
compare: Hamcrest and AssertJ.

The first generation style of assertions used to be simply stating a boolean expression
to be true. But that approach had a couple of major limitations: the expression to be
evaluated is in most cases complex or a variable initialized by non-trivial code (in both
cases making the test difficult to understand), and in case of failure, the error message is
not much help, because it only says that the evaluation of the expression is false, while
true was expected.

Thus the second generation of assertions has been introduced, with methods to state
specific properties about the objects under test and the state of the overall system. For
instance, assertEquals takes two arguments and states that they are equals. If they
are not, the automatic error message captures the values of the parameters, giving more
informative feedback. The problem with the second generation style is that numerous
different methods would be needed to cover several common uses. But if all were
provided, the users would have to memorize a plethora of assertion methods, to be able
to select the needed one. Therefore, this approach cannot succeed, taken between lack of
expressivity and steep learning curve.

More recently a third generation assertion style has appeared on the scene. It has
just one (overloaded) assertion method, assertThat, and uses different mechanisms to
provide the needed flexibility depending on the specific library. In the following, we will
discuss the basics of Hamcrest and AssertJ approaches.

Hamcrest. The first release of Hamcrest dates back to 2006, and the name is an acronym
of matchers, from its key concept. In Hamcrest, the assertThat method takes two
parameters: the object of the assertion, in most cases the result of the call under test, and
a matcher, a boolean function matching the first parameter against the expected property.
For instance, if c is a collection of strings assertThat(c, hasItems("cd","ef"))

succeeds if c contains both "cd" and "ef".
Technically the matchers are just objects of classes implementing the Matcher<

T> interface, but seldom they are directly created by a new. Good practices suggest
providing, together with matcher classes, factories for them. Thus, we can use method
calls to create new objects getting much more readable assertions. Indeed, the method
names in factories, like the hasItems call in the previous example, are carefully chosen
so that their invocations mimic natural language sentences.

Moreover, using methods to build objects paves the way to a language to compose
simple matchers to get more complex ones. For instance, everyItem takes a matcher on
the type of the elements and produces a matcher on a collection; thus, if c is a collection
of numbers, assertThat(c, everyItem(greaterThan(10))) succeeds if all the
elements in c are greater than 10. Other useful matcher composition methods are allOf
and anyOf, to state that all/any matcher of a collection of matchers must succeed, and
not, to negate matchers. Composing matchers greatly improves the expressive power
of Hamcrest without dramatically increasing the number of matchers to memorize.
However, the standard library defines a non-negligible number of basic matchers (about
90), and users are encouraged to define their own at need. Thus, users have to memorize
many matchers to proficiently use Hamcrest and, though the matcher names are in most
cases easy to remember/guess, still this need put a burden on the testers.

4 M. Leotta et al.

AssertJ follows a different approach w.r.t. Hamcrest. Indeed, its assertThat has a
unique parameter, the element under test, and yields an object of a class providing
methods to express conditions on values of the type of the parameter. For instance, if f
is an InputStream, then assertThat(f) has type AbstractInputStreamAssert,
with methods like hasSameContentAs(InputStream expected). As for Hamcrest,
choosing apt names for the assertion methods allows writing assertions reminiscent of En-
glish sentences, like for instance the following8: assertThat(fellowshipOfTheRing
).hasSize(9); Moreover, as the result type of assertion methods is again a class of
assertions, assertions can be naturally chained, like in
assertThat(fellowshipOfTheRing).hasSize(9)

.contains(frodo, sam)

.doesNotContain(sauron);

providing a logical conjunction, as the assertion passes if all its parts do.
More sophisticated logical manipulations can be expressed using the is/are and

has/have assertion methods, that take a Condition as argument and match it against
the element under test. All methods have the same semantics, but using the most appro-
priate from a linguistic point of view greatly improves readability (the plural forms are
for collections and apply the condition to all their elements). Methods like not, allOf,
anyOf can be used to create complex Condition expressions, as well as areAtLeast,
areAtMost, areExactly on collections, taking a further integer argument and veri-
fying that the number of the collection elements satisfying the condition matches the
requirement. Hamcrest matchers can be used to create AssertJ conditions thanks to small
adapters. Thus, AssertJ fully matches Hamcrest expressive power with a similar syntactic
approach, besides providing other assertion methods.

But the real hit of AssertJ is that testers do not have to remember the names of the
assertion methods, because writing assertThat(_) and following it with a dot they
get help from the IDE (code completion facility), listing all the methods in the assertion
class, that is, all the assertion methods applicable to the given type. Moreover, as the
assertion methods are clustered by the type of the actual value to be tested, their number
for each given type is manageable (though the overall collection is impressively large,
with about 380 methods, and hence expressive), and static correctness reduces the risk
of errors.

3 Practical usage of Hamcrest matchers and AssertJ methods

Both the Hamcrest and AssertJ frameworks are highly expressive, providing, respectively,
many matchers and assertion methods. But some of them are more used/popular than
others. Hence, to make a fair and significant comparison of the two frameworks, we
need to determine which assertion methods/matchers are the most used in practice and
focus the experiment mainly on them. With this aim, we applied the following mining
procedure to repositories on GitHub, the world’s leading repository hosting service:

1. we collected the list of all the Hamcrest matchers and AssertJ assertion methods;
2. we defined the repositories inclusion/exclusion criteria for our analysis;

8 This example, as the following ones, is taken from https://joel-costigliola.github.io/assertj/

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 5

3. we devised an automated procedure to count instances of the matchers/assertion
methods in our lists from the repositories satisfying our inclusion criteria;

4. finally, we ran the procedure and reported the results in percentage.

In the following subsections, a detailed explanation of the various steps is provided.

Collecting the lists of Hamcrest matchers and AssertJ methods. To find all the avail-
able matchers of Hamcrest (version 2.0.0.0) and the assertion methods of AssertJ (3.9.0),
we used reflection on the respective packages. In particular, for Hamcrest, we extracted al-
l the public static method names from the classes in the sub-packages of org.hamcrest.
For AssertJ, we extracted all public method names from classes whose name ends in
“Assert” in the package org.assertj.core.api.

Defining repositories selection criteria. Following the work of Kalliamvakou et al. [12]
and Vendome et al. [26], to exclude too simple or personal repositories we selected
only the ones matching the following criteria: 1 at least six commits, 2 at least two
contributors, 3 at least one star9 or watcher10, and 4 not a fork. Indeed according to
Kalliamvakou et al. the 90% of projects have less than 50 commits, the median number
of commits is six (criterion 1), and the 71.6% of the projects on Github are personal
projects (criterion 2). Moreover, criterion 3 guarantees that at least a user besides
the owner is interested in the project. Finally, as in the work of Vendome et al., we
excluded forks to avoid over-representation of matchers and methods used by highly
forked projects (criterion 4).

Mining assertions data from GitHub. To find usages of AssertJ and Hamcrest asser-
tions, we queried the Searchcode11 API, that returns a list of files in public repositories
containing the required text. The API allows filtering for language (Java in our case)
and code repository hosting platform (we selected GitHub). Since results are limited to
the first 1000 hits, to increase the number of results we searched matcher (method) by
matcher (method). We constructed search queries concatenating the following elements:

– Import name for the considered framework (org.hamcrest
or org.assertj.core.api.Assertions.assertThat)

– @Test (to be sure to include only occurrences in test scripts)
– Matcher (method) name

For each result (a file), after checking if the corresponding repository matches our
criteria12, the script downloads it and memorizes its Searchcode ID, to avoid downloading
it again in case it contains other assertions and so appears in further queries. Then, our
script analyses the file, identifies its assertions as the text between an assertThat(

and a semicolon, cleans them from their parameters, and counts the occurrences of each
matchers/methods appearing in them. To correctly identify matcher/method names and
9 On GitHub users star other users’ repositories to express appreciation. 10 Watchers are users
who asked to be notified of repository changes. 11 https://searchcode.com/ 12 The information
needed to apply the selection criteria is not completely accessible via the GitHub API. For example,
it is not possible to directly ask for the number of commits, but only for a list of commits that
may be divided into different pages, thus requiring several calls to the API. So, we retrieved the
required information from the repository GitHub home page, using Requests-HTML for Python
(https://html.python-requests.org/).

6 M. Leotta et al.

Matcher frequency % cumulative Method frequency % cumulative

✘ equalTo 22438 50,32% 50,32% ✘ isEqualTo 5555 43,41% 43,41%
is 9269 20,79% 71,10% ✘ isFalse 833 6,51% 49,91%

✔ notNullValue 2858 6,41% 77,51% ✘ isTrue 818 6,39% 56,31%
nullValue 1656 3,71% 81,23% as 593 4,63% 60,94%

✔ instanceOf 1470 3,30% 84,52% ✔ isSameAs 507 3,96% 64,90%
✔ containsString 1258 2,82% 87,35% ✔ isNotNull 504 3,94% 68,84%
✔ not 845 1,89% 89,24% ✔ isNotEqualTo 459 3,59% 72,43%
✔ sameInstance 612 1,37% 90,61% isNull 438 3,42% 75,85%
✔ greaterThan 512 1,15% 91,76% get 356 2,78% 78,63%
✔ closeTo 510 1,14% 92,90% ✔ hasSize 341 2,66% 81,29%
✔ hasItem 411 0,92% 93,83% containsExactly 247 1,93% 83,22%
✔ hasSize 269 0,60% 94,43% isLessThanOrEqualTo 217 1,70% 84,92%

anyOf 241 0,54% 94,97% ✔ contains 154 1,20% 86,12%
hasItems 229 0,51% 95,48% isAfterOrEqualTo 140 1,09% 87,22%
contains 227 0,51% 95,99% isBeforeOrEqualTo 138 1,08% 88,30%
greaterThanOrEqualTo 210 0,47% 96,46% isGreaterThanOrEqualTo 133 1,04% 89,33%

✔ allOf 205 0,46% 96,92% isBefore 129 1,01% 90,34%
lessThanOrEqualTo 136 0,30% 97,23% ✔ isGreaterThan 128 1,00% 91,34%

✔ startsWith 126 0,28% 97,51% isAfter 124 0,97% 92,31%
✔ lessThan 126 0,28% 97,79% ✔ isEmpty 119 0,93% 93,24%
✔ hasEntry 123 0,28% 98,07% ✔ isLessThan 117 0,91% 94,16%

arrayWithSize 107 0,24% 98,31% ✔ isInstanceOf 110 0,86% 95,01%
✔ empty 99 0,22% 98,53% containsOnly 48 0,38% 95,39%
✔ hasKey 83 0,19% 98,72% ✔ containsEntry 48 0,38% 95,76%
✔ endsWith 69 0,15% 98,87% isNotZero 44 0,34% 96,11%

containsInAnyOrder 53 0,12% 98,99% size 44 0,34% 96,45%
arrayContaining 48 0,11% 99,10% ✔ isNotEmpty 43 0,34% 96,79%
arrayContainingInAnyOrder 47 0,11% 99,20% isZero 37 0,29% 97,08%
hasToString 44 0,10% 99,30% ✔ exists 34 0,27% 97,34%
hasItemInArray 40 0,09% 99,39% overridingErrorMessage 31 0,24% 97,59%
isIn 28 0,06% 99,46% ✔ startsWith 25 0,20% 97,78%
isEmptyString 26 0,06% 99,51% containsKey 23 0,18% 97,96%
typeCompatibleWith 25 0,06% 99,57% hasMessage 22 0,17% 98,13%
isOneOf 24 0,05% 99,62% isExactlyInstanceOf 20 0,16% 98,29%
either 24 0,05% 99,68% doesNotContain 20 0,16% 98,45%
emptyArray 21 0,05% 99,72% isNotSameAs 19 0,15% 98,59%
hasXPath 21 0,05% 99,77% asList 17 0,13% 98,73%
isEmptyOrNullString 17 0,04% 99,81% ✔ endsWith 14 0,11% 98,84%
emptyIterable 16 0,04% 99,85% ✔ containsValues 14 0,11% 98,95%
both 14 0,03% 99,88% ✔ isNotNegative 11 0,09% 99,03%

✔ everyItem 13 0,03% 99,91% isEqualToComparingFieldByField 9 0,07% 99,10%
✔ hasValue 9 0,02% 99,93% isNullOrEmpty 8 0,06% 99,16%

hasProperty 8 0,02% 99,94% ✔ containsKeys 8 0,06% 99,23%
isA 7 0,02% 99,96% matches 7 0,05% 99,28%
emptyCollectionOf 4 0,01% 99,97% containsExactlyInAnyOrder 7 0,05% 99,34%

AssertJHamcrest

Table 1. Usage of Hamcrest matchers and AssertJ methods in real GitHub repositories.

avoid false positive due to substring collision, like for instance isNot in isNotIn for
AssertJ, we search using a regular expression that matches strings:

– starting and ending with any string (the name may appear anywhere in the assertion)
– containing at least one non-alphanumerical character (the separator before the name)
– then the matcher/method name
– then an open round parenthesis (for the matcher/method call)

Results. Analysing the source code of the two frameworks, we found a total of 87
Hamcrest matchers and 376 AssertJ methods available to developers. Then, searching
such matchers and methods in GitHub, we found 44592 hits in 2279 files for Hamcrest
and 12798 hits in 770 files for AssertJ from 210 repositories overall (other 592 matching
repositories did not satisfy the criteria, and were discarded).

Table 1 lists the 45 more frequent Hamcrest matchers and AssertJ methods. It is
interesting to note that they achieve a cumulative frequency of 99.97% and 99.34%
for Hamcrest and AssertJ, respectively. Moreover, about the 50% of the assertions use
equalTo or isEqualTo, and only 51 out of 87 Hamcrest matchers and 75 out of 376
AssertJ methods are used at least once in the code found on GitHub repositories matching
our criteria. These numbers suggest that developers mostly use a small fraction of the
available constructs. Moreover, the most used assertion methods in AssertJ have semantic
equivalent Hamcrest matchers in the top popular list and vice-versa.

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 7

Summary: Even if both frameworks provide many matchers and assertion methods,
in practice developers use only a few of them. This result permits us to narrow the
comparison only to a subset of assertions without significant loss of generality or
fairness.

4 Experiment Definition, Design and Settings

Based on the Goal Question Metric (GQM) template [2], the main goal of our experiment
can be defined as follows: “Analyse the use of two different assertion frameworks for
Unit Testing of Java programs with the purpose of understanding if there is an impact
w.r.t. the production costs of test cases from the point of view of SQA Managers and
Testers in the context of Junior Testers executing tasks of assertion development.”

Thus, our research question is:
RQ. Does the tester productivity vary when using AssertJ instead of Hamcrest (or

vice-versa)?
To quantitatively investigate the research question, we measured the productivity

of the participants as the number of correct assertions developed in a limited amount
of time (i.e., the number of correct assertions is a proxy for measuring the productivity
construct).

The perspective is of SQA Managers and Testers interested in selecting the bet-
ter framework for improving productivity. The context of the experiment consists of
two collections of assertions (respectively Obj1 and Obj2, i.e., the objects) both to
be implemented in both frameworks and of subjects, 41 Computer Science bachelor
students.

We conceived and designed the experiment following the guidelines by Wohlin
et al. [27]. Table 2 summarizes the main elements of the experiment. For replication
purposes, the experimental package has been made available: http://sepl.dibris.unige.it/
HamcrestVsAssertJ.php.

In the following we present in detail: treatments, objects, subjects, design, hypotheses,
variable and other aspects of the experiment.

Treatment. Our experiment has one independent variable (main factor) and two treat-
ments: “H” (Hamcrest) or “A” (AssertJ). Thus, the tasks require adopting, in the former
(latter) case, the Hamcrest (AssertJ) framework, that is, developing the assertions by
Hamcrest matchers (AssertJ assertion methods).

Goal Analyse the use of Hamcrest and AssertJ during test assertion develop-
ment tasks to understand if there is a difference in terms of productivity

Quality focus Correctness of the developed assertions

Context Objects: two collections of Assertions (Obj1, Obj2)
Subjects: 41 BSc students in Computer Science (3rd year)

Null hypothesis No effect on productivity (measured as number of correct assertions
developed in a limited time slot)

Treatments Hamcrest and AssertJ frameworks in JUnit
Dependent variable Total number of correctly developed assertions

Table 2. Overview of the Experiment

8 M. Leotta et al.

Objects. The objects of the study are two collections of seven assertions descriptions
(Obj1 and Obj2) included in a test suite for a simple JSON to CSV converter13. These
assertions require working with lists, hash-maps, and other Java non-trivial types. The
object design strives at balancing complexity as much as possible. For this reason, each
assertion description in an object has a correspondent one in the other object with the
same complexity, that is the same linguistic complexity and comparably straightforward
to implement using our target assertion methods/matchers in both treatments. .

In details, starting from the list of the most used Hamcrest matchers and AssertJ
methods (see Table 1) we conceived 14 assertions descriptions whose implementation-
s are expected to use at least one of them. Indeed, our reference implementation of
the 14 assertions descriptions in Hamcrest (AssertJ) uses 18 matchers (17 assertion
methods) in the top-45 list (some assertion descriptions require more than one matcher
(method) to be implemented), and a couple of less popular (equalToIgnoringCase
and anExistingFile in Hamcrest; isCloseTo and isEqualToIgnoringCase in
AssertJ). In Table 1 the green 3 marks the specific matchers/methods expected to be
used by the subjects participating in our experiment. Vice versa, red 7 marks the match-
ers/methods forbidden unless expressly allowed in the development of the assertions.
We added this constraint to the experiment to force the students to use the specific
matchers (assertion methods) provided by the frameworks, preventing them from using
complex expressions and equalTo/isEqualTo (always a viable, though in many cases
low-quality, solution adopted by testers in about 50% of cases, as shown by our analysis).

Assertion Examples. Let us see an example of the tasks given to our subjects. The
provided code includes the test setup and comments both to clarify the setup and to
specify the assertion to be implemented by the students. For the sake of understandability,
we have translated the comments in English, that in the experiment were in the student
mother tongue (i.e., Italian).
@Test
public void testCsvContentAtIndex() {
// Load a JSON file in the Hashmap f
List<Map<String, String>> f =
JSONFlattener.parseJson(new File("f/mysmall.json"), "UTF-8");

// Assert that the forth element of flatJson:
// (1) has a field named "user" with the value "John"
// (2) has some field with 26462 as value

For the above example, for instance, we expected something like the following solutions.
// Hamcrest reference implementation
assertThat(f.get(4), allOf(hasEntry("user", "John"),

hasValue("26462")));

// AssertJ reference implementation
assertThat(f.get(4)).containsEntry("user", "John")

.containsValues("26462");
}

Subjects. The experiment was conducted in a research laboratory under controlled
conditions (i.e., online). Subjects were 41 students from the Software Engineering course,
13 https://github.com/Arkni/json-to-csv

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 9

Group A Group B Group C Group D
Lab 1 Obj1 A Obj1 H Obj2 H Obj2 A
Lab 2 Obj2 H Obj2 A Obj1 A Obj1 H

Table 3. Experimental Design (H = Hamcrest, A = AssertJ)

in their last year of the BSc degree in Computer Science at the University of Genova
(Italy). They had a common Java programming knowledge, matured through a course
of the previous year with significant project activity. Automated testing was explained
during the Software Engineering course (i.e., the course in which the experiment was
conducted), where detailed explanations on both Hamcrest and AssertJ were provided.
Students participated into our experiment on a voluntary base, after five mandatory
labs about software engineering, including one about unit test automation using basic
JUnit assertions. Before the experiment, all the subjects have been trained on Hamcrest
and AssertJ assertions with a one-hour presentation including assertions development
(similar to the ones required in the experiment).

Experiment Design. The experiment adopts a counterbalanced design planned to fit
two Lab sessions (see Table 3). Subjects were split into four groups balancing as much
as possible their ability/experience, as ascertained by the previous mandatory software
engineering labs. Each subject worked in Lab 1 on an object with a treatment and in Lab
2 on the other object with the other treatment.

Dependent Variables and Hypothesis Formulation. Our experiment has only one
dependent variable, on which treatments are compared measuring the productivity
construct for which we defined the relative metric (as done, e.g., in [21]). The number
of correct assertions was used as a proxy to measure productivity. For each subject and
lab, the TotalCorrectness variable was computed by summing up: one if the developed
assertion is correct and zero if wrong, incomplete, or missing. Thus, the TotalCorrectness
variable ranges from zero to seven, where seven corresponds to seven correct assertions.
Since we could not find any previous empirical evidence that points out a clear advantage
of one approach vs. the other, we formulated H0 as non-directional hypothesis:

H0. The use of a framework w.r.t. the other does not improve the total correctness of
the produced assertions

The objective of a statistical analysis is to reject the null hypotheses above, so
accepting the corresponding alternative one H1 (stating instead that an effect exist).

Material, Procedure and Execution. To assess the experimental material and to get an
estimate of the time needed to accomplish the tasks, a pilot experiment with two BSc
students in Computer Science at University of Genova was performed. The students
finished both tasks in 118 and 127 minutes (also producing some incorrect assertion
implementations) and gave us some information on how improving the experimental
material, in particular concerning the description of the assertions to develop. Given the
times of the students and the time constraint of the labs, we set the total time of the entire
experiment to 2 hours (1 hour for treatment).

The experiment took place in a laboratory room and was carried on using Eclipse.
The subjects participated in two laboratory sessions (Lab 1 and Lab 2), with a short
break between them.

10 M. Leotta et al.

For each group (see Table 3), each lab session required to develop seven assertions
adopting Hamcrest or AssertJ respectively, and the subjects had 60 minutes to complete
it. For each Lab session, we assigned a specific Eclipse project to each subject, and for
each assertion to be developed, subjects: (a) recorded the starting time; (b) developed
the assertion using the online documentation; (c) recorded the ending time.

Analysis Procedure. Because of the sample size and the non-normality of the data
(measured with the Shapiro–Wilk test [23]), we adopted non-parametric tests to check
the null hypothesis. This choice follows the suggestions given by [18, Chapter 37].

In particular, after computing descriptive statistics, we used a two-step analysis
procedure. First, we calculated a contingency table displaying the frequency distribution
of the variable TotalCorrectness for the two treatments. The table provides a basic picture
of the interrelation between the treatment and the obtained correctness and provides a
first rough insight into the results. To investigate the statistical significance, we applied
the Fisher test.

Second, since subjects developed assertions of two different objects with the two
possible treatments (i.e., Hamcrest and AssertJ), we used a paired Wilcoxon test to
compare the effects of the two treatments on each subject. While the statistical tests allow
checking the presence of significant differences, they do not provide any information
about the magnitude of such a difference. Therefore, we used the non-parametric Cliff’s
delta (d) effect size [10]. The effect size is considered small for 0.148 ≤ |d| < 0.33,
medium for 0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474.

Since we performed two different analyses on the TotalCorrectness dependent vari-
able, we cannot use α = 0.05; we need to compensate for repeated statistical tests. While
several techniques are available, we opted for the most conservative one, the Bonferroni
correction [7]. In a nutshell, the conclusion will be taken by comparing the p-value to
a corrected significance level αB = α/nt, where nt is the number of statistical tests
performed. Thus, in our case, αB = 0.05/2 = 0.025.

5 Results

Let us start with a short description of the results from the experiment, analysing the
effect of the main factor on the dependent variable. Table 4 summarizes the essential
descriptive statistics (i.e., median, mean, and standard deviation) of Correctness.

Table 5 presents the contingency table of Correctness, considering the tasks per-
formed by the same subject as independent measures.

Comparing the results, it is evident that adopting AssertJ the participants were able
to develop a greater number of correct assertions: 133 vs. 107. We applied the Fisher test
on the contingency table that returned a p-value=0.017. From these results emerges a
preliminary statistically significant influence of the treatment on the capability to develop
correct assertions.

Subjects Hamcrest AssertJ p-value Cliff’s DeltaMean Median SD Mean Median SD
41 2.600 2.000 1.172 3.325 3.000 1.289 0.0036 - 0.3131 (S)

Table 4. Correctness: descriptive statistics per Treatment and Results of paired Wilcoxon test

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 11

Correct
Yes No

Treatment Hamcrest 107 180
AssertJ 133 154

Table 5. Correctness: contingency table

Fig. 1 summarizes the distribution of TotalCorrectness by means of boxplots. Ob-
servations are grouped by treatment (Hamcrest or AssertJ). The y-axis represents the
Total correctness achieved on the seven assertions to develop: score = 7 represents the
maximum value of correctness and corresponds to developing seven correct assertions.
The boxplots confirm the previous analysis: the participants achieved a better correctness
level when developing the assertion using AssertJ (median 3) than Hamcrest (median 2).
By applying a Wilcoxon test (paired analysis), we found that in this case too, the differ-
ence in terms of correctness is statistically significant, as p-value=0.0036, see Table 4.
The effect size is small d=-0.3131. Therefore, we can reject the null hypothesis H0 and
accept H1.

Summary: The adoption of AssertJ instead of Hamcrest significantly increase the
number of correct assertions developed in a limited amount of time (60 minutes in
our experiment).

Threats to validity. This section discusses the threats to validity that could affect our
results: internal, construct, conclusion and external validity threats [27].
Internal validity threats concern factors that may affect a dependent variable (in our case,
TotalCorrectness). Since the students had to participate in two labs (seven questions
each), a learning/fatigue effect may intervene. However, the students were previously
trained and the chosen experimental design, with a break between the two labs, should
limit this effect.

●

Hamcrest AssertJ

0
1

2
3

4
5

6
7

Total Correcteness

c
o

rr
e

c
t

a
s
s
e

rt
io

n
s

●

● ●

● ●

●

●

●● ●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

● ●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

Fig. 1. Boxplots of Correctness (number of correct assertions developed in 60 minutes)

12 M. Leotta et al.

Construct validity threats are related to the evaluation of correctness, that is the only
manual part of the data processing. Indeed, we used a script to extract from the student
projects the assertions and their timing and did a spot-check of the script results. Then
we run the student tests on the reference implementation and considered wrong the
failing ones. Two of the authors independently manually evaluated the successful tests to
identify those unable to spot bugs as required by their specifications, and a third author
compared the evaluations. The controversial assertions were further analysed to reach a
consensus. The overall scores have been automatically computed using a spreadsheet.
Threats to conclusion validity can be due to the sample size of the experiment (41 BSc
students) that may limit the capability of statistical tests to reveal any effect, and the
object size, that could be insufficient to significantly cover the assertion spectrum.
Threats to external validity can be related to the use of students as experimental subjects.
We cannot expect students to perform as well as professionals, but we expect to be able
to observe similar trends. Further controlled experiments with different sets of assertions
and/or more experienced developers (e.g., software practitioners) are needed to confirm
or contrast the obtained results.

6 Related Work

Since, as [6] states “Where the creation, understanding, and assessment of software
testing and regression testing techniques are concerned, controlled experimentation is
an indispensable research methodology”, the empirical studies aiming at the reduction
of testing costs are many. However, the approaches most studied to save effort during
testing are (1) writing only those tests with maximum expectations of capturing a bug,
(2) limiting regression testing to the tests with higher probability of finding errors
(see e.g. [25]), and (3) improving automatization of testing (see e.g. [4, 15–17]). For the
first two categories, researches focus on empirically assessing the probability of capturing
bugs for given tests (see e.g. [24, 8, 25]), while papers in the last category compare the
efficacy of automatic and manual testing techniques or of different automatic approaches
(see e.g. [4, 22, 15]). Our study addresses an independent issue: (4) the influence of
the choice of assertion style on the costs of developing tests. Thus, our work helps
optimizing test development and adds to the optimization in category (3) and (1), as it
applies to automated tests that have already been deemed necessary.

Another research topic somehow related to this paper is studying the understand-
ability of tests. Most works in this area compare different categories of tests, like for
instance Grano et al. [9] and Dak et al. [5], discussing readability of human-produced
tests vs. automatically generated ones. A few papers, like for instance [14], and many
web pages and posts14 compare and discuss different styles of assertions. In particular,
in [14] AssertJ, the same library used in our empirical study, is compared with JUnit
Basic assertions, in a test comprehension scenario.

Understandability, though extremely important, is relevant mostly when reading tests
as part of the code documentation or for their maintenance. Here, we focus instead on
the costs of developing tests.
14 https://www.blazemeter.com/blog/hamcrest-vs-assertj-assertion-frameworks-which-one-should-you-choose,

https://www.ontestautomation.com/three-practices-for-creating-readable-test-code/,

https://www.developer.com/java/article.php/3901236/

Hamcrest vs AssertJ: an Empirical Assessment of Tester Productivity 13

7 Conclusions and Future Work

In this paper, we have presented a controlled experiment comparing Hamcrest and
AssertJ assertion styles from the point of view of development costs in practice. We
analysed the number of correctly implemented assertions in a given time to gauge the
overall productivity in completing the assignments. Even if the experiment has been
conducted with two specific frameworks and with the Java language, we believe that
our results can be generalized to other programming languages and other assertions
frameworks belonging to the same categories of AssertJ and Hamcrest (i.e., able to
provide fluent assertions and matchers). To get our comparison as fair and as useful in
practice as possible, we first studied the usage distribution of Hamcrest matchers and
AssertJ assertion methods, to be able to focus our experiment only on the most widely
adopted (and not trivial).

The results indicate that adopting AssertJ significantly increases the number of cor-
rect tests so that AssertJ is a better choice over Hamcrest when development productivity
is sought. This piece of empirical evidence can be exploited by Testers and SQA man-
agers for a better selection of assertions frameworks for JUnit in their organizations. Even
if we have no data supporting it, we believe that the aspect more relevant of AssertJ is its
code completion facility that has simplified the activity of participants outperforming, in
this way, Hamcrest. We intend to study this aspect in future works. Moreover, we plan
to replicate this experiment with professional subjects to confirm our results; of course,
we will use more challenging assertions as tasks, given the greater knowledge of the
participants.

References

1. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right Software.
Manning Publications Co., 1st edn. (2011)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encyclope-
dia of Software Engineering. Wiley (1994)

3. Beck, K.: Test-driven development: by example. Addison-Wesley (2003)
4. Berner, S., Weber, R., Keller, R.: Observations and lessons learned from automated testing.

In: Proc. of 27th Int. Conf. on Software engineering. pp. 571–579. ICSE 2005, ACM (2005)
5. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to improve unit

tests. In: Proceedings of 10th Joint Meeting on Foundations of Software Engineering. pp.
107–118. ESEC/FSE 2015, ACM (2015). https://doi.org/10.1145/2786805.2786838

6. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering 10(4),
405–435 (Oct 2005). https://doi.org/10.1007/s10664-005-3861-2

7. Dunn, J., Dunn, O.J.: Multiple comparisons among means. ASA pp. 52–64 (1961)
8. Garousi, V., Özkan, R., Betin-Can, A.: Multi-objective regression test selection in practice:

An empirical study in the defense software industry. Inf. Softw. Technol. 103, 40–54 (2018)
9. Grano, G., Scalabrino, S., Oliveto, R., Gall, H.: An empirical investigation on the readability

of manual and generated test cases. In: Proceedings of 26th International Conference on
Program Comprehension. ICPC 2018, ACM (2018)

10. Grissom, R.J., Kim, J.J.: Effect sizes for research: A broad practical approach. Lawrence
Earlbaum Associates, 2nd edn. (2005)

14 M. Leotta et al.

11. Harrold, M.J.: Testing: A roadmap. In: Proceedings of 22nd International Conference on
Software Engineering. pp. 61–72. ICSE 2000, ACM (2000)

12. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.: The
promises and perils of mining github. In: Proceedings of the 11th Working Conference on
Mining Software Repositories. pp. 92–101. MSR 2014, ACM (2014)

13. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based software engineering. In: Pro-
ceedings of 26th Int. Conf. on Software Engineering. pp. 273–281. ICSE 2004, IEEE (2004)

14. Leotta, M., Cerioli, M., Olianas, D., Ricca, F.: Fluent vs basic assertions in java: An em-
pirical study. In: Proceedings of 11th International Conference on the Quality of Informa-
tion and Communications Technology. pp. 184–192. QUATIC 2018, IEEE (2018). http-
s://doi.org/10.1109/QUATIC.2018.00036

15. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs. programmable web test-
ing: An empirical assessment during test case evolution. In: Proceedings of 20th Work-
ing Conference on Reverse Engineering. pp. 272–281. WCRE 2013, IEEE (2013). http-
s://doi.org/10.1109/WCRE.2013.6671302

16. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for auto-
mated end-to-end Web testing. Advances in Computers 101, 193–237 (2016). http-
s://doi.org/10.1016/bs.adcom.2015.11.007

17. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: PESTO: Automated migration of DOM-based
Web tests towards the visual approach. Journal of Software: Testing, Verification and Reliabil-
ity 28(4), e1665 (2018). https://doi.org/10.1002/stvr.1665

18. Motulsky, H.: Intuitive biostatistics: a non-mathematical guide to statistical thinking. Oxford
University Press (2010)

19. Nagappan, N., Maximilien, E.M., Bhat, T., Williams, L.: Realizing quality improvement
through test driven development: Results and experiences of four industrial teams. Empirical
Software Engineering 13(3), 289–302 (Jun 2008). https://doi.org/10.1007/s10664-008-9062-z

20. Ricca, F., Torchiano, M., Di Penta, M., Ceccato, M., Tonella, P.: Using acceptance tests as
a support for clarifying requirements: A series of experiments. Information and Software
Technology 51(2), 270–283 (Feb 2009). https://doi.org/10.1016/j.infsof.2008.01.007

21. Ricca, F., Torchiano, M., Leotta, M., Tiso, A., Guerrini, G., Reggio, G.: On the impact of state-
based model-driven development on maintainability: A family of experiments using UniMod.
Empirical Software Engineering 23(3), 1743–1790 (2018). https://doi.org/10.1007/s10664-
017-9563-8

22. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do automatically
generated unit tests find real faults? An empirical study of effectiveness and challenges (t).
In: Proceedings of 30th International Conference on Automated Software Engineering. pp.
201–211. ASE 2015, IEEE (2015)

23. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 3(52) (1965)

24. Soetens, Q.D., Demeyer, S., Zaidman, A., Pérez, J.: Change-based test selection: an empirical
evaluation. Empirical Software Engineering 21(5), 1990–2032 (2016)

25. Suri, B., Singhal, S.: Evolved regression test suite selection using BCO and GA and empirical
comparison with ACO. CSI transactions on ICT 3(2-4), 143–154 (2015)

26. Vendome, C., Bavota, G., Penta, M.D., Linares-Vásquez, M., German, D., Poshyvanyk, D.:
License usage and changes: a large-scale study on github. Empirical Software Engineering
22(3), 1537–1577 (2017). https://doi.org/10.1007/s10664-016-9438-4

27. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in
Software Engineering - An Introduction. Kluwer Academic Publishers (2000)

28. Wynne, M., Hellesøy, A.: The cucumber book: behaviour-driven development for testers and
developers. Pragmatic Bookshelf (2012)

