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ABSTRACT
Applications based on Machine learning (ML) are growing in popu-
larity in a multitude of different contexts such as medicine, bioin-
formatics, and finance. However, there is a lack of established ap-
proaches and strategies able to assure the reliability of this category
of software. This has a big impact since nowadays our society relies
on (potentially) unreliable applications that could cause, in extreme
cases, catastrophic events (e.g., loss of life due to a wrong diagnosis
of an ML-based cancer classifier).

In this paper, as a preliminary step towards providing a solution
to this big problem, we used automatic mutations to mimic realistic
bugs in the code of two machine learning algorithms, Multilayer
Perceptron and Logistic Regression, with the goal of studying the
impact of implementation bugs on their behaviours.

Unexpectedly, our experiments show that about 2/3 of the inject-
ed bugs are silent since they does not influence the results of the
algorithms, while the bugs emerge as runtime errors, exception-
s, or modified accuracy of the predictions only in the remaining
cases. Moreover, we also discovered that about 1% of the bugs are
extremely dangerous since they drastically affect the quality of the
prediction only in rare cases and with specific datasets increasing
the possibility of going unnoticed.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; • Theory of computation → Machine learning
theory;
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1 INTRODUCTION
Machine Learning (ML) refers to a family of data-driven techniques
able to learn from and make predictions on data instead of being
explicitly programmed [1]. The considered problem may take the
shape of classification (assign a sample to a category) or regression
(estimate a value) tasks.

A typical ML task starts with the collection of a training set
providing a sampling of the input space. The main goal of ML is
to estimate the underlying model(s) ruling such data, and thus
providing a good representation of the training set. At the same
time, the generalization to new data must be ensured.

In recent years, ML emerged as one of the most relevant technol-
ogy enabler within a multitude of different sectors such as medicine,
bioinformatics and finance. ML allows artificial agents to find hid-
den insights from big volumes of data and for this reason, it plays
a fundamental role in decision making tasks and helps to find good
solutions to complex problems. However, the potential to apply ML
to safety critical tasks strongly depends on the reliability of such
software solutions. Thus, ensuring the correctness of machine
learning based applications is of paramount importance.

The relevance of the topic is also testified by influential scientists
(e.g., several Nature articles pin point the problem of quality control
in scientific computational software [2, 8, 14]), major companies
(e.g., a recent Capgemini article [11] reports “Software testing will be
one of the most critical factors that determine the success of a machine
learning system” ), and from the fact that the premier workshop in
automated testing, AST 20181, has dedicated a special theme on
the topic “Artificial Intelligence (AI) for Test Automation and Test
Automation for AI/ML (ML) software”. However, even if the problem
is out in the open, there is still a lack of consolidated and sound
approaches able to verify the reliability of ML software. Indeed,
ML applications represent a peculiar class of software applications
on which common software quality assurance techniques (e.g.,
traditional software testing) cannot be easily applied [19].
1http://ast2018.isti.cnr.it/topics.html
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To the best of our knowledge, our work is the first that proposes a
study having the goal of analysing the influence of implementation
bugs on the behaviour of ML algorithms (i.e., on the results they
provide) following a purely data-driven approach. We believe that
the discussion and the results proposed in this paper constitute a
first step towards the definition of novel strategies and techniques
for assuring the quality of ML-based solutions. Understanding
the behaviour of such systems in presence of bugs is a first,
fundamental prerequisite for conceiving techniques able to detect
bugs.

The paper is organised as follows: Section 2 describes the factors
which hinder the quality assurance process of ML solutions; Sec-
tion 3 reports the related works. The empirical study is described
in Section 4, followed by conclusions and future work (Section 5).

2 MACHINE LEARNING QUALITY
ASSURANCE: THE CURRENT SITUATION

Nowadays, the main research effort of ML scientists is in improving
the effectiveness of models and algorithms to better automate the
learning from real world data. On the contrary, very little effort
and work has been done for assuring the correctness of ML-based
solutions. It is well-known that formal proofs of algorithm’s prop-
erties do not guarantee that the concrete implementation of such
algorithm is correct, and thus software testing is necessary.

Software testing is a fairly straightforward activity. For every
input, there is a defined and known output. The procedure used in
software testing can be defined as follows. We define an input, make
selections and interact with the target application; then we compare
the actual result, provided by such an application, with the expected
one (the oracle). If they match, we select another input, if they do
not, we possibly have identified a bug. However, such an approach
is not applicable to ML-based applications and algorithms since,
in this specific context, the output cannot be simply computed for
real samples outside the training-test sets, and, in some cases, it
cannot be expected a priori: it will change over time as the model
on which the ML system is built evolves.

The problem of defining the expected outputs is known as “the
oracle problem” [19]. In literature, a technique called metamorphic
testing [3] has been proposed to face it. This technique is based
on the definition of metamorphic relations that such algorithm
would be expected to satisfy (more details on it are reported in the
related work section). Even if, nowadays, metamorphic testing is
one of the best approaches to ML testing, it has limitations (see the
related work section) making impossible to entirely solve the oracle
problem. Thus, it cannot be actually seen as a complete solution to
the oracle problem.

For this reason, differently from traditional software testing, the
evaluation of the behaviour of ML algorithms is, in most of the
cases, purely data-driven and conducted empirically. In fact, it is
common practice in ML to evaluate the quality of the algorithm
implementation by analysing its performances (e.g., measuring the
accuracy of the results) on one or more data sets. A typical ML
pipeline is based on the use of training, validation and test sets. In
a supervised setting, training and validation sets are employed to
learn the relation between input and output and to perform model
selection (i.e., selecting the appropriate parameters). The estimated

function is applied to the test set, as a final evaluation of its gener-
alisation capability. When a validation set is not available, K-fold
Cross Validation represents a viable alternative. Although effective
and robust to evaluate the performance of the learned models on
the available data, such pipeline provides only a partial view on
the correctness of the algorithms, and is not designed to perform
software verification. For example, cross-validation has been widely
adopted as the main method for evaluating supervised classifier
systems for decades [21]. The problem is that cross validation is not
designed for performing verification. However, practitioners in ML
often rely on it for verifying the correctness of their implementation
of ML algorithms.

In case of poor performance of the implemented solution, the
presence of bugs in the algorithm’s implementation is only one of
the possible causes. In fact, the results provided by ML algorithms
could be negatively influenced by other, possibly interconnected,
factors (this is well-known by ML experts): 1) an important fraction
of the data is noisy or mislabelled, 2) the objective function is
inappropriate, 3) the training set does not provide and appropriate
characterisation of the input space, 4) test and training sets do not
respond well to the samemodel, 5) the representation of data to feed
into the model is not so appropriate, 6) the chosen ML algorithm is
inappropriate.

Moreover, bugs in the algorithm’s implementation can be sneaky
to find since: “codes may be riddled with tiny errors that do not cause
the program to break down, but may drastically change the scientific
results that it spits out” [14].

Therefore, understanding if a low performance in terms of ac-
curacy of a ML algorithm is due to an implementation bug or not
is a difficult task. As a consequence, ensuring the correctness of
machine learning applications presents huge challenges.

3 RELATEDWORK
The problem of assuring the quality of ML-based solution is per-
ceived as very relevant in various sectors. For instance, concerning
scientific computational software, several articles published on the
prestigious Nature journal [2, 8, 14] pin point the problem of quality
control in this category of software (of which ML software is un-
doubtedly a relevant fraction). Alden et al. [2] state that to unlock
the full potential of the computer-based science, software engineer-
ing must be at peak quality throughout and that thus scientists must
ensure that the research is relevant, but at the same time, software
engineers must make sure that it is correct. Merali [14] highlights
the problem that in computational software researchers conceive
and implement novel algorithms without following the proper soft-
ware engineering best practices that help to ensure the quality of
the produced software. Hayden [8] reports that researchers increas-
ingly rely on computation to perform tasks at every level of science,
but most of them do not receive formal training in coding best
practices. As a consequence, coding errors can be present in the
algorithms implementations.

Assuring the quality of ML applications is an active research
field. Indeed, only a few months ago Masuda et al. [13], performed
a survey of the literature on software quality for ML applications
considering about a hundred papers from academic conferences
and journals including top venues of both the machine learning and
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testing sectors like: ICML, NIPS, ICST, ISSTA and TSE. A relevant
portion of the analysed papers have been published in the last 5
years.

Applying software testing in presence of the oracle problem
is really complex (software having this problem is often called
non-testable software). During the years, several techniques have
been applied to face it: random testing [7], assertion checking [18],
N-version programming [12], pseudo-oracle [6] and metamorphic
testing [3]. In the following, for space reasons, we will focus only on
the last two techniques. In particular, at date, metamorphic testing
seems to be one of the most effective techniques for testing ML
solutions.

In the case of pseudo-oracle [6], the same input is provided to
multiple, independent, implementations of the same algorithm and
the results are compared; if the output is not the same, then a
defect/bug is present in at least one of the implementations; other-
wise the implementations are likely to be correct. This approach
is not always feasible, given that multiple implementations of the
same algorithm may be difficult to find. When they are available,
it is important to verify that they have not been created by the
same developers since, in such case, they could contain the same
mistakes [9].

In the literature, a different approach for non-testable software,
that does not require multiple implementations, is available: it is
named metamorphic testing [3]. The approach is based on the fact
that often the algorithms exhibit properties such that if the input
were modified in a certain way, it should be possible to predict (or
estimate) the new output, given the original output. The steps to
apply metamorphic testing are the following: (1) defining a set of
properties called “metamorphic relations” (MRs) that relate multiple
pairs of inputs and outputs of the target program; (2) defining pairs
of source test cases and their corresponding follow-up test cases
based on the MRs; (3) executing the test cases on the algorithm
under test, and check whether the outputs of the source and follow-
up test cases satisfy the corresponding MRs. As an example, let’s
suppose we want to test a web search engine. A possible way to
test it is applying metamorphic testing providing a query Q (e.g.,
“Machine Learning”) to the web search engine. An example of MR
could be: to each query Q corresponds a number of results R; if, for
example, we create a more strict query Q’ by adding a predicate in
conjunction to Q (e.g., “Machine Learning Algorithms”) the number
of results R’ will be less or equal to R (the predicate is more selective).
Thus, we could create arbitrary pairs of test inputs (i.e., in this case
the queries Q and Q’) and verify if the algorithm under test behave
as expected even if we are not able to define R and R’ in advance
(in a web search engine the database is continuously updated, thus
test cases with fixed values for R and R’ would become quickly
obsolete).

Although, several works recognized that metamorphic relations
can effectively alleviate the oracle problem in testing, they can
never completely solve it. Indeed, in a recent article published on
ACM Computing Surveys [5], Chen et al. (the creator of metamor-
phic testing [3]) state: “MRs are necessary properties of the target
algorithm in relation to multiple inputs and their expected outputs,
but because there are usually a huge number of these properties, it is
almost impossible to obtain a complete set of MRs representing all of
them. Even if it were possible to obtain such a complete set of MRs,

they might still not be equivalent to a test oracle due to the neces-
sary (but not sufficient) nature of the properties”. Moreover, another
limitation of metamorphic testing is in the definition of the meta-
morphic relations. Even if they seems obvious on simple examples,
they can be quite complex to define, from a practitioner point of
view, in real cases. In particular, among the various possible MRs,
it is important to select those providing “strict” constraints on the
results (“weak” constraints can only identify macroscopic errors).
As a consequence, testers expertise and experience is of paramount
importance for identifying MRs [5].

Metamorphic testing has been applied for several years to test
ML algorithms and in bioinformatics software. For instance, Xie
et al. [21] applied this technique for testing and validating ML
classifiers based on the Weka library2 (in particular the k-Nearest
Neighbors and the Naïve Bayes Classifiers). More in detail, they
propose a set of metamorphic relations for classification algorithms
and an associated technique that uses these relations to enable
scientists to test and validate their implementations. Chen et al. [4]
describe an approach based on metamorphic for testing bioinfor-
matics programs. They report that “the systematic testing of many
bioinformatics programs is difficult due to the oracle problem”. More-
over, they state that “as biologists increasingly rely on the results
produced by these bioinformatics programs, it is crucial to ensure that
they are of high quality. We wish this paper can raise the awareness
of proper software testing practice in the bioinformatics community”.

4 EMPIRICAL STUDY
In this paper, we want to investigate how the presence of bugs in
the implementation of ML algorithms affect their results (and more
in general their behaviour). As preliminary step, we focused on
supervised classification problems. Classification is the problem of
identifying to which category a new observation belongs. Obser-
vations are represented as sets of features (i.e., attribute values).
Supervised learning is the task of learning a function that maps an
input to an output, given a set of known pairs input/output. Classi-
fication can be binary (only two classes, and elements must belong
to one or another) or multi-class (there are more than two classes).
We focused on this category of problems because (1) classification
is a very common task that ML data scientists have to perform,
and (2) it allows to quantitatively evaluate the performances of the
selected algorithms in terms of accuracy of the predictions.

There are several ways a bug can affect the behaviour of a ML al-
gorithm running on a specific dataset: (1) it can leave the behaviour
of the algorithm unchanged (for instance, when the line containing
the bug is not executed or because the change is insignificant, like
changing var > 0 in var >= 0 if var is always above 100 when the
algorithm is executed on the specific dataset); (2) it can make the
program to crash at runtime (these are the easier bugs to find), or
(3) it can modify the results of the predictions, and thus the obtained
accuracy. Bugs can be subtle, because of the oracle problem (in a
real scenario, we do not know the expected accuracy) and because
the incorrect behaviour may arise only with specific datasets and
settings. The impact on accuracy can range from low to remarkable.

2https://www.cs.waikato.ac.nz/~ml/weka/
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However, even low impacts must not be underestimated: in safe-
ty critical applications, e.g., a melanoma detector, a 1% accuracy
reduction can bring to the loss of many lives.

The following of this section presents the considered algorithms
and datasets, the automated procedure for generating the mutants
mimicking realist bugs, the research questions, procedure and met-
rics, the results, and finally some considerations followed by the
threats to validity of the empirical study. The goal of this paper is
to evaluate whether, andmeasure howmuch, bugs influence
the behaviour of machine learning algorithms. We follow the
guidelines by Wohlin et al. [20] on designing and reporting em-
pirical studies. The results of this study are interpreted according
to the perspective of both practitioners and researchers interested
to increase the quality of machine learning algorithms, but also
of ML-based software libraries users since they may want to be
aware of the possible problems that could arise if the chosen im-
plementations contain bugs. In the experiment we used (1) two
implementations of two common machine learning algorithms and
(2) nine datasets.

4.1 Algorithms
We conducted our experiments employing two machine learning
classification algorithms. In this study we selected: (1) Multilayer
Perceptron as representative of the neural networks class: they are
very common solutions in ML and recently gained new attention
with the advent of Deep Learning; and (2) Logistic Regression that
is among the most used algorithms by data scientists. The two
algorithms are based on different ideas (their implementations are
different) and both are available in the Scikit-learn library. Scikit-
learn3 [17] is a well-known free software machine learning library
for the Python programming language. In the following, we briefly
describe the two selected algorithms.

4.1.1 Multilayer Perceptron. The Multi-layer Perceptron4 (MLP
from hereafter) is a supervised learning algorithm based on a neural
network composed of an input layer, an output layer and one or
more hidden layers. Features are given to the input layer (which
has one neuron per input feature) and passed through each hidden
layer. Each neuron in the hidden layer transforms them different
values from the previous layer with a weighted linear summation
w1x1 + w2x2 + ... + wmxm followed by a non-linear activation
function д() : R × R. Globally a MLP learns a function f () : Ri × Ro
where i is the number of input features (and thus, the number of
neurons in the input layer) and o is the number of output class
(and thus, the number of neurons in the output layer). We used the
MLPClassifier class and built a network with hidden layers of size
(14, 32, 18, 8), parameter alpha = 0.0001 and Rectified Linear Unit
f (x) = max(0,x) as activation function. We empirically selected
the parameters values by maximizing the average accuracy across
all the datasets. Note that since our goal is to evaluate the effect of
bugs, the absolute performances of the algorithms on each dataset
are not relevant since we compare the original results with the ones
of the versions containing the bugs. The implementation of the
MLP used in this study is provided by Scikit-learn library and can

3http://scikit-learn.org/
4http://scikit-learn.org/stable/modules/neural_networks_supervised.html

be found here5. As a preliminary step, starting from the original
implementation, we removed the portions that are not used for
classification tasks (indeed it supports also regression tasks). This
is useful for avoiding the generation of mutants that will never be
executed in our experiment. The considered implementation, after
the preprocessing step, is 484 LoC long (comments are excluded) and
divided in two object oriented classes: BaseMultilayerPerceptron
andMLPClassifier.

4.1.2 Logistic Regression. The Logistic regression6 (LogReg from
hereafter), despite its name, is a linear model for classification which
supports both binary and multiclass classification. Also for this
algorithm, we used the implementation provided by the Scikit-learn
library. For this algorithm, we selected the Newton-CG method
solver with L2 penalization. The implementation of the considered
algorithm can be found here7. Also in this case, we removed the
portions that are not used for classification tasks. The considered
implementation, after the preprocessing step, is 700 LoC long, some
in standalone methods and some in the LogisticRegression class.

4.2 Datasets
In order to analyse the behaviour of the two algorithms in different
circumstances, we considered nine datasets with heterogeneous
characteristics: binary and multi-class datasets, high and low di-
mensionality, synthetic (i.e., where data are not obtained by direct
measurement but artificially generated [16]) and real (i.e., where
data are from the real world), overlapping and non-overlapping
categories. Synthetic datasets have been considered in order to have
a complete control on the quality of the data (completely separable
or not; in the latter case amount of overlapping) while the three real
datasets has been selected among free datasets having a reasonable
size in order to limit the computational effort required to complete
the experiments. The datasets Gaussian Single, Gaussian Double
(variants: 2, 4, 6, 8), and Body Mass Index are synthetic datasets,
while the datasets Iris, Cleveland Heart Disease, and Pulsar contain
real data.

In the Gaussian Clouds based dataset the feature are the x,y
coordinates of the points while the label can assume two values:
purple and green. Fig. 1 shows the plots of the five Gaussian datasets
used in our experimentation. More in detail, Gaussian Single (SG
from hereafter) is a gaussian cloud of points (µ=(5,5) and σ=2)
divided in two classes by the line y = x . The cloud is composed of
1000 points.

The four Gaussian Double datasets are created by using two
gaussian distributions (one with µ=(0,10) and the other µ=(10,0))
with different levels of overlapping. To this end, we changed the
standard deviation of the two distributions (σ=2, 4, 6, 8). Each cloud
is composed of 1000 points. The four dataset are called DG2, DG4,
DG6, and DG8.

In the case of BodyMass Index8 dataset (BMI from hereafter), each
point has two features (mass, height) and a label representing a BMI
class (8 classes from 0 to 7 categorizing a person from underweight
5http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html
6http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
7http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
8https://en.wikipedia.org/wiki/Body_mass_index
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Figure 1: Left to right: Gaussian Singlewith µ = (5, 5) andσ = 2, andGaussianDoublewith µa = (0, 10), µb = (10, 0) andσ = 2, 4, 6, 8

Figure 2: BMI dataset with 8 classes (e.g., yellow is obese)

to obese based on that value, see Fig. 2). We first sampled the
possible area of BMI:x ranges from 40 to 160kg (sample size 1kg) and
y from 150 to 210cm (sample size 0.5cm). In this way, we obtained
120x120 = 14400 points. Then, we extracted 200 points per class
using a script that uniformly selects the points from the area of
each class.

The Iris9 dataset (Iris from hereafter) is a biological multi-class
dataset that classifies 3 different species of Iris flowers (Setosa,
Versicolour, Virginica) using 4 features (sepal length, sepal width,
petal length, and petal width). The dataset contains 50 instances for
each class. It is one of the datasets used by the Scikit Learn official
unit tests.

The Cleveland Heart Disease10 dataset (Cleveland from hereafter)
is a medical multi-class dataset with 14 features (representing vari-
ous patient’s attribute like age, sex, cholesterol and more specific
ones) and 5 classes, that represent the health status of the patient
(0 = healthy, while 1,2,3,4 = different levels of disease). It has 297 en-
tries overall and in particular 160, 54, 35, 35, 13 entries respectively
for the classes 0, 1, 2, 3, 4.

The Pulsar HTRU211 dataset (Pulsar from hereafter) is a two
class astronomical dataset. Pulsars are a rare type of neutron stars
that produce radio emission detectable from Earth. Samples are
classified into pulsar and non-pulsar classes based on the values
of 9 features (8 continuous variables and a single class variable).
The dataset contains 17898 total examples: 1639 positive and 16259
negative.

For all the considered datasets, except Cleveland, the points in
each class have been equally distributed between training and test

9https://archive.ics.uci.edu/ml/datasets/iris
10https://archive.ics.uci.edu/ml/datasets/heart+Disease
11https://archive.ics.uci.edu/ml/datasets/HTRU2

sets (50-50 subdivision). For the Cleveland dataset, which has few
elements with an unbalanced class distribution, we used a 5-fold
cross-validation. The final accuracy value is the mean of the five
combinations.

4.3 Mutants Generation
Amutant is a slight variation of the original code simulating typical
errors a developer could make during development and mainte-
nance activities. For this reason each mutated line can be seen as
a possible bug. Mutants are traditionally used in the context of
testing for evaluating the quality of the produced test suites (muta-
tion testing [15]). Indeed, the mutants can be used to identify the
weaknesses in the verification artefacts by determining the parts of
a software that are badly or never checked [10]. If a test is able to
detect the mutants is likely to have good chances of detecting bugs.

In this work, we generatedmutants of the two selected algorithm-
s (i.e.,MLP and LogReg). The mutation phase is usually driven by
mutation operators which affect small portions of code, exploiting
some typical programming mistakes, like a change in a logical/-
mathematical operator (e.g., AND/+ instead of OR/-), a boolean
substitution (e.g., from true to false), or a conditional removal (e.g.,
an IF condition statement is set to true). Our goal is understanding
how the mutants change the behaviour of machine learning algo-
rithms. Manually generating the mutants in a realistic scenario is
clearly infeasible (and, in the context of an experiment, possibly
biased), but there exist automated tools (used in the context of mu-
tation testing) providing operators for generating a large number
of mutants starting from the original code.

In this work we used Mut.py12, a tool for mutation testing that
generates mutants of a given Python source code and run a test
suite against them. It inserts various kinds of mutations, like opera-
tors replacement and deletions, slice index removal and constant
replacement. We modified the tool in order to save the full source
code of the mutants to files. In this way, we can run them indepen-
dently and record interesting data for our experimentation, e.g.,
the coverage of the mutated line, behaviour of the mutant, possible
runtime errors, accuracy of the result computed by the mutant (if
any). Overall the tool generated 576 mutants forMLP and 732 for
LogReg.

In this work, a mutant is a new version of the original algorithm
implementation generated by applying a mutation. Only one muta-
tion is applied for each mutant. Thus all the mutants differ from
the original version only for a single mutated line. Thus, after the

12https://pypi.org/project/MutPy/
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mutation, in the resulting mutant it is present a bug, i.e., the error
introduced by the mutation.

4.4 Research Questions, Procedure and Metrics
Our study aims at answering the following four research questions.
RQ1: What is the effect of a bug on the behaviour of a machine
learning algorithm?

The goal of the first research question is to analyse the effect
of a bug on the behaviour of a ML algorithm implementation. The
possible cases are: same behaviour or different behaviour (i.e., ac-
curacy different from the original or exception raised/error). The
metrics used to answer RQ1 is the percentage of mutants having a
different behaviour, w.r.t. the original implementation, out of the
total number of mutants.
RQ2:What is the effect of a bug on the accuracy of machine learning
algorithms?

The goal of the second research question is to measure the vari-
ation of the accuracy in presence of bugs in the implementation of
ML algorithms. The metrics used to answer RQ2 is the accuracy.

The definition of accuracy we used is the number of correct
predictions out of the total numbers of predictions on the test set
(e.g., a 0.91 accuracy means that the 91% of the predictions are
correct). It is a good metrics for measuring the performances of ML
algorithms since it gives a clear insight of their performance.

To answer RQ1 and RQ2 we: (1) considered the two classification
algorithms described in Section 4.1 (i.e., MLP and LogReg), (2) con-
sidered the nine datasets described in Section 4.2, (3) computed
the accuracy of the prediction for the original version of each algo-
rithm on each dataset, (4) mutated the algorithms as described in
Section 4.3.

Then, for answering RQ1, we executed each mutant on each
dataset noting down the observed behaviour. For each mutant ex-
ecution, we verified whether the mutated instruction is actually
executed (we logged the number of time each mutated line is exe-
cuted using the Trace module13 available in the Python library). If
the mutated line is not executed, the algorithm obviously provides
the same behaviour of the original one. Otherwise, if the mutated
line is executed, we can have three different behaviours:

• same behaviour: the algorithm provides exactly the same
results (i.e., the accuracy is the same);

• accuracy different from the original: the algorithm runs with-
out errors but provides a different result;

• exception raised/error : the algorithm does not work correctly,
raises an exception or an error occurs, and consequently it
is not able to provide a result (this category includes also
the mutants that must be killed since do not terminate even
after waiting a multiple of the time required by the original
version).

On the contrary, for answering RQ2, we analysed the accuracy
distributions only for the mutants belonging to the category accura-
cy different from the original, i.e., for those mutants whose mutated
line is executed at least once and that provide an accuracy different
from the original.
RQ3: Does a bug consistently affect the behaviour of a ML algorithm
varying the considered dataset?
13https://docs.python.org/3/library/trace.html

The goal of the third research question is to investigate whether
a bug modifies the behaviour of a ML algorithm similarly when we
consider different datasets.

To answer this research question, for each mutant and dataset
we computed a value, representing its behaviour, in the following
way: if the mutant executes without problem we noted down the
computed accuracy of the prediction in the range [0,1] (i.e., in
the cases: same behaviour, accuracy different from the original, and
mutated statement not executed); if the mutant crashes or raises an
exception we noted down the value -1. In this way, for each of the
eight datasets, we defined a vector with size equal to the number
of mutants (respectively 576 forMLP and 732 for LogReg) that we
call “behaviour distribution”.

The metrics used to answer RQ3 is the Pearson correlation coef-
ficient14 computed among the various behaviour distributions. It is
a measure of the linear correlation between two variables X and Y .
Values are in [−1,+1], where 1 is total positive linear correlation, 0
is no linear correlation, and −1 is total negative linear correlation.
RQ4: How many are dangerous silent bugs?

We define a dangerous silent bug as a bug (i.e., a mutation applied
to the original algorithm) that drastically affects the accuracy of the
predictions only in rare cases while in general allows the algorithm
to execute without errors. It can be defined silent because it is not
easy to pin point (it runs smoothly on several datasets), and, at the
same time, it is dangerous because, when emerges, it drastically
affects the results on a dataset without rising errors or runtime
exceptions. Thus, it is very difficult to understand that the poor
performance is due to the presence of a bug (indeed, when the
algorithm is used on different datasets everything works fine).

The goal of the fourth research question is to understand how
many dangerous silent bugs are present among the generated mu-
tants. The metrics used to answer this research question is the
percentage of dangerous silent bugs out of the total number of
mutants.

4.5 Results
4.5.1 RQ1. Table 1 reports the data used to answer RQ1. Data
concerning the MLP algorithm is reported in the upper half, while
the LogReg one is in the lower half. Each column represents a dataset
(6 synthetic and 3 real) and the last column shows the aggregate
values on all the datasets.

From the table it is evident that a relevant portion of the mutants
has the mutated statement not executed, respectively about 39% for
MLP and 51% for LogReg. This is due to the fact that in several cases
the mutants are in Python methods or in if-then-else branches that
are respectively never called or executed. This is reasonable since
the mutator distributed the mutants in each portion of the code
of the two algorithms. Some of these portions are used to manage:
(1) datasets having different characteristics (e.g., some portions
of the code of the algorithm can be used to manage multi-class
classification tasks and thus they are not executed if the current
dataset contains only two classes, i.e., in a binary classification task),
(2) peculiar cases or error that in our datasets never occurred, or
(3) algorithm settings different from the ones we adopted in this
experiment.

14https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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2 4 6 8

Mutants: Total 576 576 576 576 576 576 576 576 576 5184
     Not Executed 227 225 225 225 227 227 227 227 225 2035 39,26%
     Executed 349 351 351 351 349 349 349 349 351 3149 60,74%

Mutants: Same Behaviour 167 165 150 147 134 134 143 130 143 1313 25,33%
Mutants: Different Behaviour 182 186 201 204 215 215 206 219 208 1836 35,42%
      of which raise an exception 151 151 151 151 154 154 157 157 150 1376 26,54%
      of which show a different accuracy 35 35 50 53 61 61 49 62 58 464 8,95%
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Mutants: Total 732 732 732 732 732 732 732 732 732 6588
     Not Executed 375 375 375 375 375 380 380 380 375 3390 51,46%
     Executed 357 357 357 357 357 352 352 352 357 3198 48,54%

Mutants: Same Behaviour 204 205 189 190 189 161 174 165 174 1651 25,06%
Mutants: Different Behaviour 153 152 168 167 168 191 178 187 183 1547 23,48%
      of which raise an exception 133 133 133 133 133 138 138 138 133 1212 18,40%
      of which show a different accuracy 20 19 35 34 35 53 40 49 50 335 5,09%
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Table 1: Effect of bugs on the behaviour of machine learning algorithms

In the remaining cases, the mutated statement is executed at
least once. This brings the mutants to show a different behaviour,
w.r.t. the original implementation, in the 35% and 23% of the cases
respectively for MLP and LogReg while in the 25% of the cases, for
both datasets, the results are identical (i.e., the mutated algorith-
m provides exactly the same results of the original one). Among
the ones that show a different behaviour, about 2/3 raise an excep-
tion/error (precisely 27% and 18% of the total forMLP and LogReg
respectively) while 1/3 execute without problem but the accuracy of
the prediction changes (9% and 5% of the total for MLP and LogReg
respectively).

Summary: A bug in the implementation has a relevant (from
2/3 to 3/4) probability of not influencing the behaviour of a ML
algorithm (i.e., it is a silent bug). This is due to the complexity of
the code (i.e., the bug may never be performed) or that the bug
has an irrelevant impact (its effect is too small to modify the
provided accuracy). In the remaining of the cases (from 1/3 to
1/4) the bug emerges in the form of: runtime error or exception,
or modified accuracy of the predictions.

4.5.2 RQ2. Concerning theMLP algorithm, Fig. 3 shows the distri-
butions of the accuracy of the mutants that changed the accuracy
of the predictions (464 cases in total considering the nine datasets).
Concerning the DG4, DG6, and DG8 datasets, the values are quite
close to the original accuracy. On the contrary, in the case of BMI
and of the real datasets, the values are more variable and in several
cases the accuracy is drastically affected by the bug introduced in
the mutant. It is interesting to note that in 64 cases out of 464 (14%)
the accuracy results (slightly) improved by the mutation and that
in about an half of the cases (215 out of 464) the accuracy is only
slightly affected (i.e., the accuracy of the mutants is between the
67% and the 100% of the original value).

Fig. 4 shows the same kind of data for the LogReg algorithm. In
this cases, concerning the synthetic datasets, differently from the
MLP case, the values are lower than the original accuracy. Note that
the boxplots in Fig. 3 and Fig. 4 report only the accuracy values for
the mutants for which the accuracy of the prediction changes w.r.t.

Figure 3: Accuracy distributions ofmutants providing differ-
ent results:MLP algorithm

the original algorithm. Thus, in the case of LogReg, by comparing
the boxplot for DG2 and DG4 it could appear that mutants provided
better results forDG4. This is true only considering the mutants that
provided different accuracy values (only 19 in DG2 and 35 in DG4)
and it does not mean that globally all the mutants performed better
on DG4 rather than on DG2. In the case of the real datasets, the
distribution are quite similar to the one obtained forMLP except for
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Figure 4: Accuracy distributions ofmutants providing differ-
ent results: LogReg algorithm

theCleveland dataset wheremutants consistently provided accuracy
predictions very close to the original one (except for two outliers).
Overall, 48 mutants out of 335 improved the accuracy of the results
with respect to the original implementation. In more than one third
of the cases (134 out of 335) the accuracy is only slightly affected
(i.e., the accuracy of the mutants is between the 67% and the 100%
of the original value).
Summary: Focusing on the bugs that modify the accuracy, the
interesting fact is that a big portion reduces the accuracy of
prediction of less than 1/3. Therefore, on real datasets they can
be very difficult to detect by considering only the achieved
accuracy level.

4.5.3 RQ3. Table 2 reports, for the MLP and LogReg algorithms,
the Pearson correlation coefficients computed between all the 81
“behaviour distributions” pairs (9x9 matrix with ones on the main
diagonal). For instance in Table 2 (left) the cell (BMI,Iris) reports
0.9901. This value represents the Pearson correlation coefficient
computed between the distributions of the mutants for the BMI and
Iris datasets (a 576 points array for each dataset). The coefficients
have a greener background when the correlation is strong (i.e., close
to one), redder when the correlation is weaker (i.e., close to the
min value in the table), and white when it is close to the median
value. By looking at the tables, it is evident that, in absolute, the
correlation is always strong: indeed the min values are 0.9284 for
MLP and 0.9311 for LogReg, where 1 represents a total positive
correlation and 0 no correlation. The results can be clustered into
two sets: each mutant behaves similarly when working on binary
datasets (i.e., SG, DG2, DG4, DG6, DG8, Pulsar), and the same holds
for multi-class classification tasks (BMI, Iris, Cleveland). This is
probably due to the fact that for similar kind of datasets, similar
execution paths are performed in the algorithm code.

However, this coarse grain analysis does not allow to pin point
possible interesting rare cases. Indeed, even if in general there
is a high correlation among the behaviour distributions (one per
dataset), we observed that some mutants provide very different
results when executed on the various datasets. In particular, 23
and 22 mutants of MLP and LogReg have a variation, in terms of
accuracy, greater than 0.5 (i.e., on some datasets the prediction is
close to the original one and in others lower of more than the 50%).
The worst case is represented by mutant id=206 at line 129 of the
LogReg algorithm: on BMI the accuracy is reduced of 0.8488 w.r.t.
the original algorithm while in the case of Cleveland the accuracy
is reduced of only the 0.0368.

Summary: In general, there is a high probability that a bug in-
fluences the behaviour of an algorithm similarly when working
with different datasets. In particular, this holds when the type
of classification is similar (i.e., binary or multi-class classifica-
tions). Focusing on the provided accuracy values, about a tenth
of the bugs provided different results depending on the consid-
ered dataset and in about the 4% of the cases the difference can
exceed the 50% ranging from excellent to poor results.

4.5.4 RQ4. Starting from the data used to answer RQ3 we focussed
our analysis in order to find the candidate dangerous silent bugs.
Thus, among the mutants that always returned a results (i.e., that
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1,0000 1,0000 0,9999 0,9999 0,9996 0,9285 0,9284 0,9325 0,9911

2 1,0000 1,0000 0,9999 0,9999 0,9996 0,9285 0,9284 0,9325 0,9911

4 0,9999 0,9999 1,0000 0,9999 0,9996 0,9291 0,9294 0,9331 0,9916

6 0,9999 0,9999 0,9999 1,0000 0,9997 0,9287 0,9293 0,9333 0,9912

8 0,9996 0,9996 0,9996 0,9997 1,0000 0,9293 0,9296 0,9334 0,9919

0,9285 0,9285 0,9291 0,9287 0,9293 1,0000 0,9901 0,9886 0,9317

0,9284 0,9284 0,9294 0,9293 0,9296 0,9901 1,0000 0,9972 0,9322

0,9325 0,9325 0,9331 0,9333 0,9334 0,9886 0,9972 1,0000 0,9351

0,9911 0,9911 0,9916 0,9912 0,9919 0,9317 0,9322 0,9351 1,0000

Synthetic Datasets Real Datasets

Pulsar
Single 

Gaussian

Double Gaussian
BMI Iris

Cleve 

land

S
y
n

th
e
ti

c
 

D
a
ta

s
e
ts

Single Gaussian

D
o

u
b

le
 

G
a
u

s
s
ia

n

BMI

R
e
a
l 

D
a
ta

s
e
ts Iris

Cleveland

Pulsar

2 4 6 8

1,0000 0,9999 0,9999 0,9996 0,9991 0,9329 0,9382 0,9382 0,9988

2 0,9999 1,0000 0,9999 0,9998 0,9993 0,9325 0,9384 0,9384 0,9988

4 0,9999 0,9999 1,0000 0,9999 0,9995 0,9323 0,9385 0,9388 0,9987

6 0,9996 0,9998 0,9999 1,0000 0,9997 0,9319 0,9386 0,9397 0,9986

8 0,9991 0,9993 0,9995 0,9997 1,0000 0,9311 0,9382 0,9401 0,9985

0,9328 0,9325 0,9323 0,9319 0,9311 1,0000 0,9938 0,9869 0,9349

0,9381 0,9384 0,9385 0,9386 0,9382 0,9938 1,0000 0,9943 0,9391

0,9382 0,9384 0,9388 0,9397 0,9401 0,9869 0,9943 1,0000 0,9396

0,9988 0,9988 0,9987 0,9986 0,9985 0,9349 0,9391 0,9396 1,0000

Synthetic Datasets Real Datasets

Single 

Gaussian

Double Gaussian
BMI Iris

Cleve 

land
Pulsar

Pulsar

S
y
n

th
e
ti

c
 

D
a
ta

s
e
ts

R
e
a
l 

D
a
ta

s
e
ts

D
o

u
b

le
 

G
a
u

s
s
ia

n

Single Gaussian

BMI

Iris

Cleveland

Table 2: Correlation coefficients among behaviour distributions:MLP (left) and LogReg (right) algorithm
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executed without errors on all the datasets) we selected the ones
that provided: (1) on only one dataset an accuracy reduction, w.r.t.
the original one, of at least the 20% (>= −0.2000, i.e., the problem is,
in our opinion, substantial); and (2) on all the other eight datasets
an accuracy reduction smaller or equal than the 5% (<= −0.0500,
we believe that on these dataset the problem could go unnoticed).

In the case of MLP, we found four mutants with these character-
istics (4 out of 576, 0.69%), while in LogReg they were nine (9 out
of 732, 1.23%). An example of mutant with little or no impact on
the accuracy for eight datasets, but with a catastrophic impact for
the remaining one is the mutant id=300 at line 437 of the LogReg
algorithm. It changes the line of code containing if self.solver ==
‘liblinear’ in if not self.solver == ‘liblinear’, causing the unexpected
execution of some lines (we always used newton-cg as solver). This
mutant was unnoticed on the gaussian clouds datasets (i.e., null
accuracy variation), had a slight negative impact on the Iris, Cleve-
land and Pulsar datasets (respectively -0.0267, -0.0003, and -0.0040
accuracy), but had a consistent accuracy decrease (-0.3825) for the
BMI dataset.

The two algorithms, MLP and LogReg, are equipped of unit tests
that can be used to validate the correctness of the implementation
when a developer commits a new version.We executed them against
the mutants to understand if they were able to detect them. In the
case ofMLP all the candidate dangerous silent bugs were detected,
while in the case of LogReg the test cases were not able to detect
two of them. The first mutant is id=357 at line 164. It changes an
assignment inter_terms = v[:, -1] in inter_terms = v[:, -2]. This
mutant was unnoticed on gaussian clouds datasets and on the Iris
dataset (i.e., null accuracy variation), had a slight positive impact on
Cleveland (+0.0033 accuracy) and a slight negative impact on Pulsar
(-0.0030 accuracy), but caused a significant accuracy decrease (-
0.3763) for BMI. The second mutant is id=209 at line 169. It changes
an assignment r_yhat -= inter_terms in r_yhat += inter_terms.
This mutant was unnoticed on the SG, DG2 and DG6 datasets (i.e.,
null accuracy variation), had a slight positive impact on Cleveland
(+0.0067 accuracy), a slight negative impact on the DG4, DG8, Iris,
and Pulsar datasets (respectively -0.0010, -0.0010, -0.0133, and -
0.0090 accuracy), but had a significant accuracy decrease (-0.3838)
for the BMI dataset.
Summary: About 1% of the bugs introduced can be defined as
dangerous silent bugs. Since they manifest themselves on only a
dataset (i.e., in rare cases), they are very difficult to detect but
potentially, in real cases, they can drastically affect the quality
of the predictions. In a few cases, even the official test suite used
to check the quality of the algorithm implementation was not
able to detect these dangerous silent bugs.

4.6 Considerations
At a first sight, it could appear that in general bugs probably do not
drastically affect the quality of the predictions or that they can be
easily detected thanks to runtime errors or exceptions. However,
the existence of the dangerous silent bugs is a relevant problem.
Few of them emerged in our study but it is important to highlight
that other bugs of this kind can be present among the remaining
mutants. In fact, each bug that does not clearly manifest itself with
strong effects on multiple datasets could be a potential dangerous

silent bug on other datasets. In our study, dangerous silent bugs can
be still present among the mutants that: (1) contain a mutated line
that is not executed using our datasets (602 out of 1308 overall);
(2) do not modify the accuracy of the considered datasets (371 out
of 1308), or (3) that modify the accuracy only slightly (e.g., 25 out of
1308 mutants affect the accuracy of no more of 5% in the worst case
on all the eight datasets). They could be found only using datasets
with different characteristics or different algorithms’ settings. Note
that in general 279 out of 1308 mutants are also not killed by the
official algorithm’s test suites.

Finally, the definition we adopted of dangerous silent bugs is
quite stringent (they should clearly manifest on only one dataset).
We have several additional cases in which a bug drastically affects
the results of only two datasets. If we had not considered in our
experiment one of the two datasets, suddenly they would have
classified as dangerous silent bugs.

Summary: The fact that a considerable percentage of the inject-
ed bugs basically does not affect the behaviour of the algorithms,
poses a considerable problem: among them several other dan-
gerous silent bugs could be present. In a real scenario, these bugs
could emerge only when the corresponding implementation
is adopted on a new dataset, for instance as a part of a safety
critical system. This poses a serious problem about which tech-
niques should be used to detect them and thus to ensure the
quality of ML-based software.

4.7 Threats to Validity
In this section we briefly sketch some of the major threats of this
study.

Differently from many empirical studies, we are not interested
to obtain the best performance from a proposed algorithm or tech-
nique, but to understand how ML algorithms behave in presence
of bugs. Thus, we are aware that the settings used to run the algo-
rithms can be considered suboptimal and in some cases affect the
absolute performance of the predictions. Adopting better parame-
ters of the algorithms could have modified the observed behaviour,
however we believe that: (1) in general the obtained accuracies are
quite good (see the red lines in Fig. 3 and 4), so the choice of the
parameters can be considered acceptable; and (2) ML library users
are often not super-expert of the selected algorithms so our choices
could be similar to the one of a typical user.

Concerning the generalization of results, we selected two real
open source machine learning algorithms and three real datasets,
which makes the context realistic, even though further studies with
other algorithms/datasets are necessary to corroborate the obtained
results and to understand whether the observed behaviour is similar
also in other cases. Also the kind of mutator operations applied
to the original algorithms cannot fully represent the plethora of
possible bugs that a developer can insert in the implementation.
Extending the set of considered bugs with additional, more complex
errors could change the distribution of the behaviours among the
various classes but could also help to find even more dangerous
silent bugs and so to strengthen our results concerning the strong
need of novel techniques for software quality assurance of ML
algorithms.
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The thresholds (20% and 5%, see the results of RQ4) used for se-
lecting the bugs that we defined both as dangerous and silent, from
the complete list of bugs are arbitrary. Changing these thresholds
would obviously lead to find a different number of dangerous silent
bugs. However, in our opinion the thresholds are reasonable and
the found bugs are potentially really dangerous (in several cases
the selected bugs show an accuracy reductions close to the 40%).

5 CONCLUSIONS AND FUTUREWORK
In this paper, we analysed the influence of implementation bugs
on the behaviour of ML algorithms. We believe that the results of
our study can be interesting for two categories of people. (1) Final
users of ML algorithms since they should be aware of the possible
problems that could arise if the chosen implementation is not care-
fully selected. The problem is becoming more and more relevant
since the proliferation of ML implementations freely available on
the web is increasing. (2) Researchers working on quality assurance
of ML-based software since understanding the behaviour of such
systems in presence of bugs is a fundamental prerequisite for con-
ceiving techniques for detecting and then removing such quality
problems. For this reason, our work can be considered a first useful
step towards the definition of novel strategies and techniques for
assuring the quality of ML-based solutions.

Our study clearly shows that a small fraction of the considered
bugs exhibits a behaviour that can be defined as both dangerous and
silent. Indeed, such bugs manifest themselves, with strong negative
effects (depending on the context of usage of the algorithm this
could have dangerous consequences) in rare cases, and thus they
are very difficult to detect. The fact that a considerable percentage
of the bugs basically does not affect the behaviour of the algorithms,
considering the nine datasets, poses a considerable problem: indeed,
among them, several other dangerous silent bugs could be present.
They could emerge when the algorithms implementations are used
on a novel dataset.

In our future work, we plan to replicate this study by: (1) consid-
ering more complex mutations in order to include other categories
of bugs; in this way we will be able to simulate other categories
of errors that ML developers can commit (e.g., calling a wrong
function, exchange the value of variables, etc.); (2) considering
other ML algorithms; (3) considering other real datasets with dif-
ferent characteristics. Moreover, since in the case of open source
implementations of ML algorithms all the versions are available
on the online software repositories, we plan to select the versions
preceding the various documented bugs fixes in order to analyse
the effects of real bugs on the behaviour of the algorithms (i.e.,
using implementations including real recognized bugs instead of
generated mutants).
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