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ABSTRACT
Software testing is a crucial part of business success to ensure final
product quality. However, little concrete data exists on technical
demands about it in the industry, mostly collected through personal
opinion surveys on a restricted sample of professionals.

In this paper, we used a different approach: we applied content
analysis to a set of about five million job advertisements taken from
a popularWeb job-search engine. The analysis of job advertisements
is more promising than surveys because the data are by far more
numerous and distributed geographically.

The content analysis results revealed four essential findings on
the current practice of software testing: a) Companies search for
about six times more Coders than Testers, b) Unit testing is the
most required skill for Coders while Acceptance testing is the most
popular for Testers, c) Automated testing dominates the job ad-
vertisement scene compared to Manual testing and, d) the most
valuable testing tools and frameworks are Selenium, JUnit, and Cu-
cumber for both Testers and Coders. We believe that these findings
(and other related results from the content analysis study) will be
useful for professionals, instructors, and researchers dealing with
software testing.
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1 INTRODUCTION
Software testing is an essential and complex technical activity that
requires skilled professionals proficient in many different method-
ologies, tools, practices, and techniques performing diverse roles.
Inadequate software testing usually leads to significant risks and
serious consequences (e.g. failures as the Mars Polar Lander, the
Patriot missile, and the Therac 25 radiation deaths [13]). For this rea-
son, it is vital to know the state of the art and practice and learn from
it. We must study the best practices, procedures, methodologies,
and tools used in industrial practice, software-testing problematic
areas, possible solutions, and new trends. Knowing the current
practice to improve the future is paramount for managers that have
to decide which methodologies, tools, and techniques are the most
suitable. Also, instructors, researchers, and academics dealing with
the long-standing problem of teaching useful and current software
testing topics, or interested in finding challenging research topics
need the same practical knowledge.

Unfortunately, little concrete data exists on software-testing
and quality assurance practices [8]. Moreover, most of them were
collected using surveys [15] on restricted samples of profession-
als. Researchers use surveys to gather relevant information from
a sample of people, aiming at generalizing the results to a larger
population. However, small samples, with respondents often se-
lected from a few countries, could be non-representative and make
generalizations difficult, affecting the study’s external validity [14].

In this paper, we use a different strategy, that is, content analysis
(see e.g. [21]) applied to a massive set of job advertisements taken
from a popular Web job-search engine. The method of analyzing
job adverts is promising because the data are numerous, distributed
geographically, easily accessible, and well represent the industry
needs. In our case, we analyzed about five million job advertise-
ments published from 2015 up to 2018, written in English, and
located in 220 different countries.

The long term goal of our work is taking a snapshot of the
industrial practice in the field of software testing to answer research
questions of interest for teachers, researchers, and professionals.
This paper is just the first step of this quest, where we investigate:
(a) the relevance of the testing phase in the software development,
e.g., when compared to coding; (b) which testing categories are the
most used in practice, e.g., among unit, integration, and system
testing; (c) the prevalence of manual testing vs. automated testing;
and finally (d) which are the frameworks and tools most adopted in
the industry. This last point is of high relevance because people are
the best asset in the IT industry, and giving them the right tools
will boost their productivity and provide the business an edge.
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The paper is organized as follows: Section 2 describes our em-
pirical study, presenting goals, research questions, and data set.
Adopted analysis procedure and preliminary results are shown in
Section 3 and 4, respectively. Finally, related works are discussed
in Section 5, and we draw our conclusions in Section 6.

2 STUDY DEFINITION
The main aim of this work is collecting information about industrial
practice on software testing.

2.1 Method
Usually, researchers answer this kind of question by mean of per-
sonal opinion surveys that need many respondents to be significant
(page 12, [22]). Indeed, a limited number of participants reduces the
reliability of the obtained results from a statistical viewpoint. Thus,
one of the main limitations of this approach lies in the difficulty
of reaching enough interviewees. For instance, in our previous ex-
perience [11, 16, 20], we found getting more than a few hundred
participants very difficult. Analogously, other researchers in the
software engineering field experienced the same difficulties. For
instance, [3] is based on 178 professionals, [2] on 97, and [12] on 48.

Therefore, in this study, we decided to face the problem differ-
ently. Nowadays, job search engines on the web collect a massive
number of job advertisements (ads). Each ad can contain a detailed
description of the job and the required skills and technologies. Our
idea is to use such a bounty of data to gather insight into several
aspects of the testing activities in the current industrial practice.

We made an agreement with LinkUp1, one of the most extensive
indexes of job openings sourced directly from company websites
globally (more than 100 million of jobs indexed in the last decade,
and 3.5 million daily active job count), getting access to their data
for research purposes.

2.2 Goal
The goal of this work is taking a snapshot of the industrial practice
in the field of software testing to the interest and use of:

• teachers and instructors interested in offering courses and
tutorials on the techniques, technologies, and tools most
requested and used in industrial practice;

• researchers interested in focusing their research activities and
efforts on the testing aspects most relevant for the industry;

• SQA managers and testers interested in understanding what
are the testing techniques, frameworks, and tools most rele-
vant in the industry, in particular when they have to make
critical decisions about introducing something new in their
organizations;

2.3 Research Questions
Starting from the above goal, we derived the following Research
Questions (RQs):
RQ1: Which is the relevance of software testing compared to the

relevance of coding?

1https://www.linkup.com/

By comparing testing with coding, the first RQ aims at under-
standing the importance of testing in the context of software de-
velopment. For answering this RQ, we used as a proxy the ratio
between the number of job ads (contained in the considered dataset)
requiring software testers and coders, respectively.

The ratio of testers to coders, which represents how many times
the industry sought software testers compared to coders, let us
infer the market share of software testers in contrast to coders.
From it, we can get a rough idea of the relevance of software testing
compared to coding.
RQ2: Which categories/types of software testing are the most required

among Coders and Testers?
The second RQ aims at assessing which categories/types of test-

ing, such as unit, acceptance, End-to-End (E2E), performance/load,
security/penetration, are the most required, and so perceived as
more useful, from the companies. For answering this RQ, we used as
a proxy the percentage of job offers for Coders and Testers requiring
specific categories/types compared to their total. Section 3 describes
the procedure to define the categories of testing considered in this
study.
RQ3: Which of the two categories, manual and automated testing, is

nowadays the most required among Coders and Testers?
Testing may be classified into two broad categories: manual and

automated. Manual testing is the process of checking a software
product manually against functional and non-functional require-
ments without executing scripted tests. On the contrary, automated
testing relies on the use of dedicated software tools. The third RQ
aims at assessing what is the relevance of automated testing in
the industrial practice, nowadays. For answering this RQ, we used
as a proxy the ratio between the number of job advertisements of
Coders and Testers, concerning automated and manual testing.
RQ4: Which testing tools and frameworks are the most requested for

Coders and Testers?
The fourth RQ aims at evaluating which tools and frameworks

are the most valuable in the industrial practice for testing purposes.
We postulate that the number of times a job ad in a dataset requires
a tool correlates with its perceived relevance. For answering this
RQ, we used as a proxy the percentage of job offers of Coders and
Testers requiring a specific tool/framework compared to their total.
Section 3 describes the procedure to define the list of testing tools
and frameworks considered in this empirical study.

2.4 Dataset
The context consists of the job advertisements available in the
LinkUp dataset. Our data source is the complete dataset contain-
ing all the job advertisements published in the last decade, listing
more than 100 million records from 220 different countries. The
amount of data is enormous (more than 275GB overall). For each
job advertisement, several useful information is included, like com-
pany name, city, state, country, creation and deletion date, full-text
description, O*NET code.

The Occupational Information Network2 (O*NET ) is a free online
database that contains hundreds of occupational definitions. It char-
acterizes jobs in terms of the skills and knowledge required, how

2https://en.wikipedia.org/wiki/Occupational_Information_Network
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the work is performed, and typical work settings. It was developed
under the sponsorship of the US Department of Labor/Employment
and Training Administration (USDOL/ETA).

We used the O*NET associated with each job ad to filter the
dataset and drastically reduce the number of entries. Indeed, we
kept only those related to the IT sector, as described in the next
session.

3 DATA PREPARATION PROCEDURE
We received the data in raw textual form and extracted from the
vast mass of job advertisements only those of interest. Then, we
used them to populate a database specifically designed to support
the queries needed for our research questions.

In Section 3.1, we will discuss how we have built the table with
the data about the job advertisements, by subsequent refinements.
In Section 3.2, we will present the tagging procedure adopted for
associating job advertisements to keywords about testing and cod-
ing.

3.1 Dataset Cleaning
The data made available by LinkUp concern about 110 million
advertisements published from 2007 up to 2018, mostly written in
English, but located in 220 different countries.

The information is split into two parts. The first is the job records
that is the data needed for a brief synopsis, like, for instance, title,
seeking company, job location. The second is the job description
that is a full text of an average length of 3,500 chars, detailing the
job. Both parts use the MD5 hash of the URL of the job offer as
the primary key. The hash also acts as the external key from job
description to job records. The overall job record list occupies about
25 GB in CSV format, while the corresponding descriptions occupy
about 250 GB in XML format.

Given the massive amount of data, we needed to filter from the
very beginning the irrelevant data, to avoid wasting space and time,
and make a query-intensive approach feasible.

We based the first data pruning on the categorization made
by the companies. Indeed, each job record contains the O*NET
Occupation Code, as described in the previous section. We selected
only the codes having testing among the typical tasks listed on
the O*NET website. The codes chosen in this way are the 27 in
the macro-category Computer and Mathematical related to IT jobs
(codes starting by 15-11) plus Computer and Information Systems
Managers (code 11-3021.00), Quality Control Analysts (code 19-
4099.01) and Computer Operators (code 43-9011.00). We deemed
many selected categories irrelevant to answer our RQ accordingly
to their description. However, we chose to be conservative and keep
all of them, on the off chance that the presence of test in the task
list misled companies seeking testers into using some of them.

Therefore, we imported into the table Jobs all the job records hav-
ing any of the selected O*NET , and we got 11,086,286 rows (about
10% of the overall content of the original data repository). Then,
we imported into the table JobDescriptions only the descriptions
with the same hash key as some entry in Jobs, and we got 5,239,455
entries. Thus, less than half of the job records have a corresponding
full-text long description.

From the raw imported data, we extracted a third table, Infoes,
where we joined job descriptions and the relevant part of job infor-
mation, to simplify and optimize the queries. We kept the columns
Hash, Title, Country, Created, and Onet from Jobs, and the column
Description from JobDescriptions. We added the column Descrip-
tionLanguage, initialized using the library for language detection
by Pēteris N, ikiforovs3. Such a library uses naive Bayesian filters to
detect the language of a text and claims to have 99% over precision
for 53 languages. We experimented with language detection on
titles also but found it unreliable, as, in many cases, the text short-
ness and the massive presence of acronyms and company names
prevented the library from working.

To be able to analyze the text, we needed to restrict ourselves to
just one language, so we removed the 163,701 advertisements with
non-English description language.

Finally, we restricted our analysis to the years 2015-2018 for
two reasons. On the one hand, we are more interested in recent
history, having a more significant impact on the current trends. On
the other hand, technology is changing fast, so that any research
question about tools needs to target a small interval.

The final count is 4,824,591 rows in Infoes. Those job ads are the
data we work on in this paper. Moreover, 88% of the job records for
those years have a description, hence appears in Infoes. Therefore,
we work on high quality, extremely representative data set of about
five million points.

3.2 Data Classification
The next step was the definition of a list of conceptual categories
representing topics in the field of testing and coding. Each category
clusters one or more keywords related to the same specific concept,
be it an abstract topic or a tool. For instance, we selected the key-
words "E2E test", "end-to-end test", "end2end test" for the conceptual
category of end to end testing. Then, that list is expanded in our
searches with variants for the word test, like, for instance, tests,
tested, and testing, as we will discuss later.

We aimed to have a comprehensive list to be used to reliably clas-
sify the job advertisements regarding the subjects of our research
questions. To select the categories, we integrated our experience
with an analysis of a few authoritative sources, like classic textbook-
s and Wikipedia. Then, we added hits from many google searches,
mostly for the tool part, to be sure to cover the current practices.

In particular, on the coding side, we examined lists of program-
ming tools fromWikipedia, the developer surveys by StackOverflow
for the years of interest4, and the TIOBE Programming Community
index5, that sorts programming languages according to their popu-
larity. Moreover, for each of the top 20 languages in that index, we
searched for the best tools for that language and inspected the hit
first page.

Similarly, on the testing side, we used the typology of testing
listed on Wikipedia, and the tools cited in its category for software
testing tools. Moreover, we searched for best software testing tools
in general and specifically for the different kinds of software test-
ing. Then, we examined the hit first page. In particular, for the

3https://github.com/pdonald/language-detection
4https://insights.stackoverflow.com/survey/201x, for x=5,6,7,8
5https://www.tiobe.com/tiobe-index/
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automation testing tools, we are in debt with the web site Test
Guild6 by Joe Colantonio, where tools are empirically rated based
on questionnaires administered to professionals.

The outcome of this investigation was a list of slightly more than
400 conceptual categories, memorized into the table Categories,
and fairly divided between testing and coding. Then, we wanted
to relate conceptual categories with job advertisements referring
to them. Moreover, we needed to do this automatically, given the
size of the population (about 5 million). So, for each conceptual
category, we collected synonyms, acronyms, and linguistic variants,
and used them to query the description column of the table Infoes
for matches.We used the found correspondences to define a relation
between Categories and Infoes. This approach entails executing
millions and millions of textual matches. Thus, simply using LIKE
is unfeasible because the required time would be far too much.
Therefore, we used a Full Text Indexing (FT-index in the following)
of the columns containing advertisement titles and descriptions.
FT-index is a standard feature of MS SQL-Server that builds an
index associating each word to the position(s) where it appears in
each cell. Roughly speaking, building a Full Text Indexing means
that for each row in the table (in our case Infoes) and each column
to be indexed (in our case Title and Description)

(1) the content of that cell is tokenized in words, breaking the
strings where spaces, tabs, end of lines, punctuation symbols,
numbers and the such occur;

(2) the stop words, that is, those words that are too short or too
common in a language to be significant, like for instance
articles or auxiliary verbs, are dropped;

(3) for each remaining word, the index is updated, adding the
reference to the row, the column, and the positions of all its
occurrences.

Though this process is expensive, it is performed just once and
makes subsequent queries very fast. Using an FT-index, different
kinds of queries are possible:

• looking if a word or a phrase is [not] contained in the text;
• looking for a group of words all appearing in the text within
a given distance, preserving or not their order; thus, we can
look for a word near some others, tailoring the concept of
near on a case-by-case base;

• looking for all inflections of words the language dictionary
(in our case in the English dictionary). That is, both singular
and plural for nouns, all verbal forms for verbs;

• a logical combination of the above, by the usual Boolean
connectives and, or, not.

We took full advantage of all these possibilities to deal with prob-
lematic keywords.

Indeed, some conceptual categories were trivial to manage. For
example, the tools with phrasal names and meaningless acronyms
just generated a disjunction (or) of contains clause. For instance,
Micro Focus Unified Functional Testing (UFT) software, formerly
known as QuickTest Professional (QTP), generates:
CONTAINS( Description, '"Unified Functional Testing"

or UFT or "HP QuickTest Professional"
or QTP or "QuickTest Pro"' )}

6https://testguild.com/automation-testing-tools/

However, many categories were more challenging and very few
unmanageable. The first cause of troubles was the possible clash
between the names (or acronyms) of tools and common English
nouns, like, for instance, Selenium, or Cucumber, or Espresso. In-
deed, we had to distinguish name occurrences referring to the tool
from those using the name in a generic sense. Moreover, some noun-
s were also denoting other tools by the same name in a different
area, like Oxygen, or place names, like, for instance, Buffalo. In
these cases, we refined the query. The first step was verifying if the
clash was present in our data by manually inspecting 30 random
matches for the keyword. If we did not find any false positive in
the sample, we just used the standard query. Otherwise, we tried
to find a difference in usage patterns between the correct cases
and the false positives, in terms of other words [not] occurring in
the vicinity of the keyword, and refined the query using the near
form and those words. Then, we verified the correctness of this
new candidate query by checking 30 random matches of it for false
positive. Moreover, we verified that the new query was not too
restrictive taking 30 random matches of the keyword not selected
by the candidate query for false negative. If we did not find any in
both cases, we used the candidate query. Otherwise, we refined the
query differently and repeated the process until success. In very
few cases, we were not able to complete the process and had to give
up on the keyword, like, for instance, Buffalo7, or Brackets8.

The choice of 30 values for the samples was a compromise be-
tween the effort required by the manual inspection and the confi-
dence level we wanted to achieve. Indeed, we experimented with
samples of different sizes and found out that with smaller numbers,
repeated samplings could present errors, even if the first selection
did not. However, with a size of about 25-30 elements, the problem
disappeared.

To give the gist of how refined queries look, in the case of the
Espresso Testing Framework for Android by Google, we landed,
after some trial and error, on the following query

CONTAINS(Description, '"espresso framework" or
near((espresso,test),3,false) or
near((espresso,framework),3,false) or
(espresso and
(android or Robolectric or Roboelectric or selenium)
and not coffee and not tea and not gourmet and not
Formsof(inflectional,"espresso machine"))')

The final part of the query prevents the many job advertisements
explicitly mentioning free espresso and other gourmet beverages
from matching. The first part captures ads relative to automated
testing or Android development.

A second, totally different, kind of problem were keywords that
are also stop words, as they are ignored both in the search phrase
and in the searched text. The supreme example is the C language.
Indeed C, having just one letter, is a stop word and, as such, is
not even indexed. However, C as a language has great relevance
when tagging job advertisements for software developers. Thus,
in this and similar cases, we had no other choice but using the

7https://gobuffalo.io/
8http://brackets.io/
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like construct in the query. For instance, in the case of the C lan-
guage, we built the following search predicate (used in SQL SELECT
statements):
'.'+Description+'.' like

'%[^a-zA-Z0-9&£]C[^a-zA-Z0-9+#£]%';

4 RESULTS
This section reports for each RQ, the procedure followed to define
the answer and the obtained results.

4.1 RQ1: Testing vs. Development
Procedure. To answer RQ1, we need to estimate the number of
tester/coder positions offered. For this purpose, we will count the
ads having O*NET codes representing tester or coders, respectively.
An analysis of the job descriptions in the O*NET catalog shows
that software testers belong in code 15-1199.01 - Software Quality
Assurance Engineers and Testers, and there are no other codes for
them. On the other hand, a few codes characterize specific types
of coders, and some programming activity is required by many
less focused job categories too. Since we are interested in full-time
application coders, the codes of our interest are 15-1132.00 - Software
Developers, Applications and 15-1134.00 - Web Developers. A couple
of other O*NET titles sound like a synonym for coders, but we dis-
carded them after diving deeper in their descriptions. The first one
is 15-1133.00 - Software Developers, Systems Software, that concerns
low-level programming, while we are interested in the application-
level. Another one is 15-1131.00 - Computer Programmers, which
defines sort of assistants to software developers, with some coding
responsibilities, but restricted more to scripting applications than
developing them.
Results. Table 1 summarizes the most important information for
answering RQ1. The table reports the data for the top-20 most
used O*NET in the IT sector. The first two columns contain the
O*NET code and the corresponding description. The third column
reports the number of advertisements labeled with that O*NET in
the years 2015-2018 (in decreasing order). We marked by C the
O*NET representing coders and by T the one for testers. Finally,

the last columns contain data to check that the O*NET labeling of
job ads agrees with their contents, as discussed in the following
subsection Data Check.

As we can see from the table, the O*NET 15-1132.00 - Software
Developers, Applications is the one that scores more job advertise-
ments in the entire IT field, with 1,126,893 advertisements. The
other O*NET related to coders, 15-1134.00 - Web Developers, has
been used for labeling 205,507 advertisements. Thus, the total num-
ber of advertisements for coders is 1,332,400. On the other hand, the
sole O*NET directly related to testers, 15-1199.01 Software Quality
Assurance Engineers and Testers, scores 230,676 job advertisements.
Thus, to answer RQ1, we compute the ratio between the number
of ads included in the coders and testers categories obtaining a
value of 5.78. If we broaden our interpretation of coder to include
also 15-1133.00 Software Developers, Systems Software and 15-1131.00
Computer Programmers, the total number of coders related adver-
tisement raises to 1,580,982 and the ratio to 6.85.
Data Check.We cannot rule out a priori that job advertisements
are incorrectly labeled. Indeed, the structure of the O*NET classifi-
cation is quite complex. Thus, job advertisers could misunderstand
O*NET definitions. To check that companies did not make mistakes
(in statistically significant measure), we verified that the keyword
distribution agreed with our analysis of O*NET classification. Thus,
we computed the percentage of rows from the Infoes table that
matched at least two conceptual categories related to coding/test-
ing for eachO*NET code.We asked for twomatches (instead of one),
to limit the effects of false positives. Thus, the matching advertise-
ments have a very high probability of being related to coder/tester
jobs. The results of our verification are reported in Table 1, columns
% of match for coders and testers.

Concerning Coders, we can see that the highest percentages are
by far those for the O*NET we identified as coders (labeled by a
C), with values around 80%. The second best group consists of (i)
Software Developers, Systems Software, (ii) Computer and Information
Research Scientists, and (iii) Computer Programmers, with values
around 55-60%, followed by Software Quality Assurance Engineers
and Testers, with 41%. The others have values smaller than 25%.

O*NET Code Description Advertisements % of match median % of match median

C 15-1132.00 Software Developers, Applications 1,126,893 77.6% 4 21.3% 0

15-1151.00 Computer User Support Specialists 546,289 7.4% 0 1.7% 0

15-1142.00 Network and Computer Systems Administrators 527,351 23.4% 0 3.7% 0

15-1121.00 Computer Systems Analysts 447,594 25.4% 0 21.2% 0

15-1199.09 Information Technology Project Managers 408,300 7.7% 0 6.6% 0

15-1122.00 Information Security Analysts 303,179 14.7% 0 7.9% 0

15-1199.02 Computer Systems Engineers/Architects 291,596 22.6% 0 7.0% 0

T 15-1199.01 Software Quality Assurance Engineers and Testers 230,676 41.0% 1 78.8% 5

C 15-1134.00 Web Developers 205,507 83.1% 5 15.5% 0

11-3021.00 Computer and Information Systems Managers 214,529 6.5% 0 1.6% 0

15-1133.00 Software Developers, Systems Software 181,079 61.6% 2 18.1% 0

15-1131.00 Computer Programmers 67,503 54.6% 2 10.9% 0

15-1111.00 Computer and Information Research Scientists 70,686 58.9% 2 1.2% 0

15-1141.00 Database Administrators 60,290 24.3% 0 4.1% 0

15-1143.00 Computer Network Architects 43,041 8.8% 0 4.5% 0

15-1121.01 Informatics Nurse Specialists 28,052 1.7% 0 4.0% 0

15-1199.08 Business Intelligence Analysts 18,314 14.7% 0 2.6% 0

19-4099.01 Quality Control Analysts 15,488 0.7% 0 2.5% 0

15-1199.10 Search Marketing Strategists 10,519 23.0% 0 1.4% 0

43-9011.00 Computer Operators 7,507 2.6% 0 0.3% 0

Coders Check Testers Check

Table 1: RQ1. Top-20 most used O*NET in the IT sector in the years 2015-2018.
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The second best group percentages may seem significant. However,
taking into account also the median values, we can easily see that
the pertinence of the corresponding job categories is much smaller.
In particular, their median value is two against the 4 or 5 for the
O*NET we have selected.

We blame the dispersion of matches for coding concepts on the
conceptual categories representing technologies. Indeed, they can
also appear in advertisements for end-users/testers/support people
of that technology and not only developers. Scripting languages
and environments, together with activities like debugging, are the
most popular matches for the excluded O*NET scoring high values.

The same analysis for Testers yields even more drastic results,
as Software Quality Assurance Engineers and Testers reaches almost
80%, and it is the only one with values over 25%. Accordingly, its
median is 5, while all the others have 0.

Both for Coders and Testers, we manually inspected 30 randomly
chosen advertisements and verified that there were no false positive.

Therefore we can confirm our initial analysis about the O*NET
representing coder and tester categories and use the number of
advertisements labeled by such O*NET codes as an estimate of the
number of coders and testers.

Summary. In conclusion, it emerges that companies search
about six times more for coders than for testers.

4.2 RQ2: Testing Categories
Procedure. To answerRQ2, we compared the testing levels and the
testing types listed on Wikipedia, with two modifications: (1) we
added End-to-end testing, that is gaining nowadays more and more
relevance; (2) we dropped Development testing, as it was more relat-
ed to best development practices than to testing per se. Development
testing is also too difficult to search for, getting mostly false positive.
For instance it matches the phrases development of testing cases, of
being a stop word, and system/software. . . development. Testing. . . .

Since all these testing levels and types were conceptual cate-
gories, we counted the numbers of distinct links between them
and job advertisements, grouped by O*NET . We did not take into
account the tools, as many of them serve different testing purposes.
For instance, many unit testing tools are also used to run integra-
tion/acceptance tests. Moreover, integrated frameworks offering
support for many different kinds of testing are quite common. Thus,
it is not possible to automatically understand, from a textual match,
if the advertising companies are interested in the framework for
some task or the other.
Results. Table 2 summarizes our findings partitioned into two
macro-categories: (1) testing levels and (2) testing types, techniques,
and tactics. For each entry of the table, we report the total number
of matches found in (a) all the advertisements related to Coders (i.e.,
15-1132.00 and 15-1134.00) and (b) all the advertisements related
to Testers (i.e., 15-1199.01). Also, we report the percentage of the
Coders and Tester advertisements matching each specific entry. We
list the entries of the two macro-categories in descending order of
the number of matches in the column "Testers".

Concerning the "Testing Levels" (rows 1-4) and focusing on
Coders, the most requested is unit testing followed by integra-
tion, acceptance, and system (see the blue bars). On the contrary,
in the case of Testers, the ranking is almost reversed. Acceptance

Acceptance testing 31,876 2.8% 27,600 15.2%

System testing 26,494 2.3% 21,780 12.0%

Integration testing 57,255 4.9% 19,010 10.5%

Unit testing 175,962 15.2% 11,912 6.6%

Regression testing 18,260 1.6% 35,095 19.3%

Functional testing 15,991 1.4% 25,847 14.2%

Software performance testing 22,035 1.9% 25,102 13.8%

End to end testing 5,895 0.5% 9,500 5.2%

Security testing 7,503 0.6% 4,681 2.6%

Non-functional testing 1,499 0.1% 4,295 2.4%

Smoke and sanity testing 943 0.1% 2,885 1.6%

Usability testing 8,072 0.7% 1,670 0.9%

Compatibility testing 399 0.0% 1,618 0.9%

Continuous testing 1,758 0.2% 1,382 0.8%

Beta testing 964 0.1% 769 0.4%

Installation testing 572 0.0% 637 0.4%

Accessibility testing 505 0.0% 623 0.3%

Internationalization and localization 109 0.0% 467 0.3%

Conformance testing or type testing 115 0.0% 306 0.2%

Concurrent testing 21 0.0% 112 0.1%

Alpha testing 381 0.0% 81 0.0%

Destructive testing 1,123 0.1% 48 0.0%

A/B testing 0 0.0% 0 0.0%

Output comparison testing 0 0.0% 0 0.0%
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Table 2: RQ2: number of matches for testing levels and test-
ing types, techniques and tactics in the years 2015-2018.

testing is the most requested, followed by system and integration,
and unit testing is the last. As expected, unit testing is explicitly
required by a significant percentage of coder job advertisements
(15.2%), integration testing by a mere 5%, and the other levels by
a negligible rate. For testers, on the other hand, all levels but unit
testing score a two digits percentage.

Concerning the "Testing Types, Techniques and Tactics", we con-
sidered 20 entries. Among them, three are by far the most popular
for both Coders and Testers: regression, functional, and perfor-
mance testing. After them, end-to-end scores relevantly for both
Coders and Testers. Moreover, security and usability testing for
Coders have the same magnitude.

The testing types, techniques, and tactics appear in a tiny per-
centage of coder job advertisements, with percentages up to 1.6%.
On the converse, regression testing is mentioned by almost 20% of
tester job ads and functional and software performance testing by
14.2% and 13.8%, respectively.

The distribution of relevance for the different kinds of testing
for coders agrees with coders being more focused on software
improvement than software quality assurance.

Summary. In conclusion, it emerges that the most required
categories/types of software testing vary depending on the job
type. The most important testing levels are unit testing for
coders and acceptance testing for testers, with about the same
percentage of advertisements. The most required testing types
are regression, functional, and performance testing for both
coders and testers. However, the relevance order for coders
favors performance, then regression, then functional; for testers,
on the other hand, we have regression first, then functional,
then performance.
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4.3 RQ3: Manual vs. Automated Testing
Procedure. To answer RQ3, we need to count the advertisements
for jobs requiring manual/automated testing skills. Both are con-
ceptual categories. Thus, we counted the numbers of distinct links
between them and job advertisements, grouped by O*NET (as for
the previous research question). The results are overwhelmingly in
favor of automation.

To refine our analysis, we also computed the intersection of
the two testing typologies. That is, we counted the advertisements
mentioning both manual and automated testing. We sampled some
of those ads to understand which professional figure they described.
In some cases, the job offering companies looked for testers able to
perform both testing kinds, in others for technical consultants to
help them move from manual to automated testing.
Results. In Figure 1, both charts present the number of matches
(and the corresponding percentage) for the conceptual categories
of manual/automated testing. The inner rings only consider coder
ads (i.e., O*NET 15-1132.00 and 15-1134.00). The outer rings refer to
tester ones (i.e., 15-1199.0). The difference between the two charts
is in the definition of concerning automatic/manual testing. In the
NO Tools, we count as hits only the job advertisements tagged by
the manual/automated conceptual categories. In the chart Tools,
we extended our query for automated testing, counting also those
advertisements matching some tools for automated testing, of any
kind and level. We think that the latter approach is the correct
one, as any advertisement requiring the use of some testing tool,
implicitly refers to automated testing.

We color differently advertisements matching (1) manual but not
automated testing (blue), (2) both manual and automated testing
(grey), and (3) automated but not manual testing (orange).

3,432
Coders
2.7%

123,141
Coders
96.5%

1,015
Coders
0.8%

19,772
Testers
15.5%

102,500
Testers
80.1%

5,632
Testers
4.4%

No Tools

Both manual and automated
Only automated
Only manual

3,977
Coders
1.2%

331,841
Coders
98.7%

470
Coders
0.1%

24,856
Testers
13.0%

165,266
Testers
86.7%

548
Testers
0.3%

Tools

Both manual and automated Only automated Only manual

Figure 1: RQ3: advertisements for job requiring manual/au-
tomated testing skills in the years 2015-2018.

The advertisements mentioning automated but not manual test-
ing (orange slices) cover the almost totality of those for coders
(98.7% with tools, 96.5% without), and a vast majority of those for
testers (86.7% with tools, 80.1% without). These results show that
automated testing is by far more required than manual.

In both charts, the percentages of coder job advertisements men-
tioning manual but not automated testing (blue slices) are negligible
(below 1%), as well as those mentioning both categories (2.7% with
tools, 1.2% without). Thus, we can conclude that manual testing is
not a concern for coders.

For testers, a small percentage of job advertisements mentions
manual but not automated testing (0.3% with tools, 4.4% without),
and a relevant part mentions both categories (13.0%with tools, 15.5%
without). Thus, we can conclude that automated testing expertise is
far more in demand in ads and that manual tests are a prerogative
of the testers.
Summary. We can conclude that automated testing dominates
the job advertisements scene since it is by far more required
than manual testing for both Coders and Tester. Comparing ads
mentioning just one of the two types, the ratio between the two
is negligible, and even disregarding tools, it ranges from 1:20 (an
advertisement concerning manual testing every 20 for automat-
ed testing) for testers to less than 1:100 for coders. Taking into
account also those advertisements mentioning both categories,
the ratio between the advertisements concerning automatic and
manual testing ranges from 1:5 for testers disregarding tools to
slightly more than 1:100 for coders considering tools.

4.4 RQ4: Testing Tools and Frameworks
Procedure. To answer RQ4, we ranked the conceptual categories
representing testing tools on the number of matches in job ad-
vertisements. We defined two rankings, the first considering job
advertisements for coders (O*NET 15-1132.00 - Software Develop-
ers, Applications and 15-1134.00 - Web Developers) and the second
those for testers (O*NET 15-1199.01 - Software Quality Assurance
Engineers and Testers).
Results. Table 3 summarizes our findings for the 30-most-requested
testing tools and frameworks. As in the case of RQ2 and RQ3, for
each entry of the table, we report the total number of matches found
in (a) all the advertisements related to Coders (i.e., 15-1132.00 and
15-1134.00) and (b) all the advertisements related to Testers (i.e.,
15-1199.01). For each category (i.e., Coders and Testers), the entries
are in descending order of hits. The top 10 entries are highlighted
with different colors in order to evidence how ranking changes
when focusing on Coders and Testers only.

In the case of Coders, JUnit is by far the first, with more than
50,000 hits, followed by Selenium, with slightly more than 33,000
hits, and the pair Cucumber and Jasmine, quite outdistanced with
hits in the order of 14,000.

For testers, we have Selenium in pole position with about 49,000
hits, UFT in a faraway second position with nearly 17,500 hits, and
a cluster of tools, Cucumber, JUnit, and WebDriver, with hits in the
order of ten thousand (about 12,000 for Cucumber and about 11,000
for the others). Note that Selenium9 is a general term associated
with a suite of tools for automating web application testing across
many platforms. The two main tools of the suite are Selenium IDE
and SeleniumWebDriver [10]. Thus, the fifth position ofWebDriver,
on the one hand, clarifies its relevance among the tools within
Selenium, on the other hand, makes even stronger the first position
of Selenium as a whole.
9https://www.seleniumhq.org/
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Framework / Tool
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1 JUnit 50,110 Selenium 49,113

2 Selenium 33,047 UFT 17,584

3 Cucumber 14,383 Cucumber 11,980

4 Jasmine 13,911 JUnit 10,810

5 ApacheJMeter 8,343 WebDriver 10,776

6 Mocha 7,889 ApacheJMeter 8,321

7 NUnit 7,650 TestNG 6,696

8 Mockito 7,469 LoadTesting 6,118

9 TestNG 7,136 Appium 5,118

10 LoadTesting 5,898 LoadRunner 4,193

11 Protractor 5,389 Gherkin 2,688

12 SonarQube 5,276 Protractor 2,548

13 WebDriver 5,177 NUnit 2,096

14 UFT 3,885 Jasmine 1,521

15 Spock 2,739 RobotFramework 1,255

16 Jest 2,672 TestComplete 1,177

17 Rspec 2,456 Gatling 1,170

18 Appium 2,352 Watir 1,016

19 XUnit 2,093 Tosca 956

20 LoadRunner 2,028 Spock 949

21 Gherkin 1,693 Ranorex 874

22 PMD 1,524 WinRunner 727

23 AutomationAnywhere 1,464 Mocha 670

24 QUnit 1,303 RationalFunctionalTester 646

25 EasyMock 1,172 Rspec 618

26 FindBugs 1,147 XUnit 607

27 Gatling 1,118 Parasoft 576

28 Checkstyle 1,096 SilkTest 574

29 Espresso 954 SOAtest 528

30 RobotFramework 944 Calabash 526

TestersCoders

Table 3: RQ4: Top 30 Scoring Testing Tools and Frameworks
in the years 2015-2018.

Summary. Considering the overall score, and summing coder
and tester hits, it emerges that the most valuable tools and frame-
works are Selenium (more than 80,000 hits) and JUnit (almost
61,000 hits), followed by Cucumber (about 26,000 hits) and UFT
(about 21,500 hits). In particular, Selenium is by far the most
requested for Testers (even more when considered in conjunc-
tion with WebDriver) and JUnit for Coders. Besides Selenium,
coder ranking favors unit testing tools, while Selenium (used
for end-to-end testing) completely dominates tester ranking.

4.5 Threats to Validity
In our opinion, the main threats to validity of our study concern:
(1) definition of the conceptual categories, (2) definition of the
queries, (3) representativeness of the sample, and (4) geographic
distribution of the advertisements.

Concerning point (1), we strived to define a comprehensive list
following the procedure described in Section 3.2. That is, we inte-
grated our experience with an analysis of authoritative sources, like
classic textbooks and Wikipedia, and then added hits from many
Google searches for covering the current practice. Moreover, one
author created the list, and the others checked and extended it
independently.

Concerning point (2), one author developed the queries, and the
others double-checked them independently, to reduce coding errors
as much as possible.

Concerning point (3), LinkUp is one of the most extensive in-
dexes of job openings, and we analyzed a very high number of

advertisements. Thus, we can reasonably assume that all kinds of
IT companies are fairly represented.

Concerning point (4), the analyzed advertisements reflect the
job markets where LinkUp is more used. The USA has the lion
share with more than 3.3 million ads, and the faraway second is
India, with less than half a million. The distribution by continent is
North America 75%, Asia 13%, and Europe 9%. The other continents
have negligible percentages. Thus, our study mostly focuses on the
North American market. Further geographically distributed data
points are highly desirable to confirm our findings worldwide. For
instance, we should replicate the study with job search engines
from China or Japan, preferably with the textual analysis in their
local languages besides English.

5 RELATEDWORKS
A Survey is a research method used for collecting data from a pre-
defined group of respondents, usually employing questionnaires,
to gain information on various topics of interest. A large number
of surveys have been conducted on software testing in different
countries, e.g., [5, 7–9, 17, 19].

A recent survey on software testing has been conducted in Cana-
da with 246 practitioners [5]. The survey results reveal interesting
findings on software testing practices. First, in most Canadian com-
panies, testers are out-numbered by developers, with ratios ranging
from 1:2 to 1:5. This result is in line with what we obtained in RQ1.
Second, system and unit testing are two common testing types
that receive the most attention and efforts, followed by GUI, ac-
ceptance, and performance testing. As reported in the sub-section
concerning RQ2, our empirical study found out that unit testing
is the technique most requested by the industry too. Differently,
in our ranking, we have acceptance and integration testing before
system testing. Maybe, this is a sign that software testing practices
are changing, and nowadays, more attention is devoted to accep-
tance and integration testing. Third, manual testing is still in the
dominant position versus automated testing. The trend is similar to
another survey previously conducted in Australia [19]. Concerning
this point, we obtained that companies seek much more profes-
sional competences in automated than in manual testing. However,
this phenomenon could be a direct consequence of the fact that
companies already have many skilled manual testers and want to
invest in automated testing. Fourth, XUnit frameworks (e.g., JUnit,
NUnit ) and different commercial functional testing tools (e.g., IBM
Rational Functional Tester) are two of the most widely used cate-
gories of testing tools. Web application testing tools (e.g., Selenium)
are also widely used. This result is consistent with what we have
obtained in RQ4.

Even if very common, survey research has two significant limi-
tations compared to content analysis of job advertisements, which
we conducted in our work. On the one hand, it usually works on
small samples compared to content analysis. On the other hand, it
treats perceived data, i.e., what a respondent believes or thinks (the
perception), and not real data as content analysis often does (the
reality).

A large number of content analysis studies concerning software
engineering are present in literature (e.g., [1, 4, 18]). They mainly
focus on technical skills, soft skills, industry needs, and trends.
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Florea and Stray [4], for example, have conducted a recent con-
tent analysis study of advertisements to examine the relevance of
soft skills when hiring software testers, and if there are specific skill-
s required for agile testers. They analyzed 400 job advertisements
for testers considering 33 countries and using different job-search
engines. They found out that 64% of job offers require soft skills.
Only 30% of the companies looked explicitly for agile testers. We
share the analysis procedure with the content analysis study of
Florea and Stray. Nevertheless, our goals are different and broader.
Moreover, in our case, the considered sample of adverts is orders
of magnitude larger.

6 CONCLUSION AND FUTUREWORK
We conducted this empirical study to take a snapshot of the indus-
trial perceived needs in the field of software testing and use it to
answer a few research questions, useful to professionals, instruc-
tors, and researchers. Our research method is content analysis, that
we applied to a set of about five millions of job advertisements,
taken from a popular Web job-search engine.

The main findings from the study can be summarized as follows.
Software testing plays a vital role in the industry (in the adverts, the
ratio between Testers and Coders is 1:6). Investing in Unit testing for
Coders and in Acceptance Testing for Testers is essential. Mastering
automated testing tools, such as Selenium, JUnit, and Cucumber, is
beneficial for both categories. Indeed, automated testing is more
requested by companies compared to manual testing.

Since this is preliminary work, we see several possible exten-
sions. For example, (1) comparing in-depth our results with the
ones obtained in related works and try to understand differences
(if any); (2) conducting other experiments to confirm our data, us-
ing different job advertisement datasets, or survey-based analyses;
(3) analyzing the considered RQs as a function of time; (4) extending
the research questions to other detailed aspects of software testing
such as end-to-end and security testing; (5) refining the analysis
procedure using more in-depth and fashion approaches such as,
e.g., semantic topic analysis using LDA-based topic modeling (as
done, e.g., in [6]) to perfect the obtained results.
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