
CASL-MDL, modelling dynamic systems with a
formal foundation and a UML-like notation

Christine Choppy1 and Gianna Reggio2

1 LIPN, UMR CNRS 7030 - Université Paris 13, France
Christine.Choppy@lipn.univ-paris13.fr

2 DISI, Università di Genova, Italy
gianna.reggio@disi.unige.it

Abstract. In this paper we present a part of Casl-Mdl, a visual mod-
elling notation based on Casl-Ltl (an extension for dynamic system
of the algebraic specification language Casl). The visual constructs of
Casl-Mdl have been borrowed from the UML, thus existing editors may
be used. A Casl-Mdl model is a set of diagrams but it corresponds to
a Casl-Ltl specification, thus Casl-Mdl is a suitable means to eas-
ily read and write large and complex Casl-Ltl specifications. We use
as a running example a case study that describes the functioning of a
consortium of associations.

1 Introduction

The aim of our work is to reshape the formal specification language Casl-
Ltl [11] (a Casl [7] extension for dynamic systems) as a visual modelling nota-
tion, and this requires to provide a visual syntax to the Casl-Ltl specifications.
This work is motivated by the fact that in our opinion the currently available
modelling notations have some problematic aspects, for example the lack of a
formal semantics if not of a well-defined syntax.

We decided to attempt this experiment for the following reasons:
- Casl-Ltl is very suitable to specify/model different kinds of dynamic systems,
and at different levels of abstraction. Indeed, it has been used to specify the use-
case based requirements [2], the main features (the domain, the requirements
and the machine) for the basic problem frames [3], and recently it has been used
to specify the services in the field of SOA (Service Oriented Architecture) [6].
- A modelling (specification) method for Casl-Ltl was developed [4], where
the modelling is guided by the use of simple ingredients/concepts as data types,
dynamic system, elementary interaction, and cooperations between systems.
- Casl-Ltl is extremely expressive (it includes a powerful first-order temporal
logic), allows different styles of specification/modelling (e.g., property oriented
and constructive [4]), while still based on a limited number of constructs,
- it is not object-oriented, and this may be an advantage, whenever the models
are not used for developing object-oriented software (e.g., when using SOA),
- and obviously it has a well-defined semantics, and there exists software tools
to help the formal verification of its specifications.

However, the textual, quite verbose syntax, may prevent to use Casl-Ltl
for large specifications, needless to say that this threatens the acceptance by
the non-academic modellers. A visual syntax for Casl-Ltl will help to keep
the dimension of the models quite reasonable, and obviously will ease the under-
standing and the production of models, even by people without a deep know-how
in logics and algebraic specifications.

In [4] we already made a first attempt to give a visual presentation to some
Casl-Ltl specifications, using ad hoc graphical symbols and icons. The attempt
was successful for what concerns the compactness of the specifications and the
ease to produce them, but further applications and extensive experimentations
were prevented by the lack of supporting software tools, e.g., an editor. Obviously
these tools could be developed but to produce high quality tools requires really
a large effort. Moreover, the graphics of this first attempt of a visual syntax
needed to be improved for a better legibility.

In [10] we find the same concern to ease the use of formal specifications by
providing a graphical/visual notation for it, and they use both class diagrams
and constraints diagrams to represent Z specifications. In [9], constraint diagrams
and VisualOCL are compared as a means to visualize OCL expressions. Clearly,
our approach here is not to propose a formal semantics to the UML [12], thus
we do not refer to the numerous works of that field [1].

Our present work with Casl-Mdl relies on borrowing visual constructs of the
UML to build a visual syntax for Casl-Ltl. This choice has some advantages:
- the graphical constructs are widely known, and were introduced in the UML
by pre-existing notations, and now have been tested by a huge number of users
for a long time; thus they are familiar and may be easily understood
- some peculiar characteristics of the UML, as its flexibility and the easiness to
define variants of itself, and the very loose static semantics, make it possible to
define the concrete visual syntax of Casl-Ltl as a variant of the UML (that is
as a UML profile)
- software tools for editing the UML models are widely available, and many good
ones are free.

However, an issue is that, when looking at a Casl-Mdl model, some people
may be confused between UML and Casl-Mdl, and perhaps may use Casl-
Mdl with the UML intuition. To overcome this we use the profile mechanism
to stress the semantic differences; for example a CASL predicate is depicted as
a UML operation without return value stereotyped by <<pred>>. A definitive
answer about the fact that the borrowed syntax may lead to confusions can
only be given by means of rigorous experiments, as proposed by the empirical
software engineering, where people knowing both UML and Casl-Mdl would
be asked to interpret and to produce some models in a controlled way.

Let us remind of a famous occurrence of “syntax borrowing” that resulted in
a big success, i.e., the definition of the Java programming language, where the
syntax of the C language was kept on purpose whenever possible even if their
semantics are totally different. In this case it seems that no confusion arose and
also that the familiar aspects of the new language helped its acceptance.

Not any specifications of Casl-Ltl will have a visual counterpart, but only a
subset, however large enough to include all the specifications produced following
the method of [4].

In Casl-Mdl we have a type diagram, introducing the datatypes and the
dynamic types, which are types of dynamic system (either simple or structured),
used in the model. Constraints allow one to express properties on the introduced
types (i.e., on the corresponding values or dynamic systems) using first-order
and temporal logics. Interaction diagrams express visually properties on the
interactions among the components of a structured dynamic systems using the
same constructs as the UML sequence diagrams. The behaviour of the dynamic
systems of a given type is modelled by interaction machines, using the same
constructs as the UML state machines.

The definition of Casl-Mdl is an ongoing work and in this paper we will
present only the type diagrams and the interactions diagrams, while in [5] we
describe also the interaction machines, the constraints, and the constructive defi-
nition of data types. Up to know we have not introduced in Casl-Mdl diagrams
for modelling the workflow, as the UML activity diagrams or the BPMN pro-
cess diagrams, which would be very useful for using Casl-Mdl for business
modelling and the modelling of business processes; we are currently working on
that.

In Sect. 2 we introduce the Casl-Mdl models, in Sect. 3 and in Sect. 4
the type diagrams and the interaction diagrams respectively, and finally in the
Sect. 5 the conclusions and the future works.

In the paper we use as a running example the modelling of ASSOC, a case
study that describes the functioning of a consortium of associations where as-
sociations have boards with a chair and several members, and board meetings
take place, to communicate informations or to take decisions via voting. ASSOC
has been used as a paradigmatic case study to present a method for the business
modelling based on the UML, and thus we think that it may be a good work-
bench to test the modelling power of Casl-Mdl. Fragments of the model of
ASSOC will be used to illustrate the various Casl-Mdl constructs, an organic
presentation of this model can be found in [5].

2 CASL-MDL Models

A Casl-Mdl model represents the modelled item in terms of values and of dy-
namic systems, and we use the term “entity” to denote something that may be a
value or a dynamic system; similarly an entity type defines a type of entities. In
Fig. 1 we present the structure of a Casl-Mdl model, by means of its “concep-
tual” metamodel expressed using the UML1. The corresponding concrete syntax
will be expressed by means of a UML profile, allowing to use the UML tools
for editing and for model transformations (e.g., into the corresponding textual
Casl-Ltl specifications). Thus Casl-Mdl has both a conceptual and a con-

1 In the UML the black diamond denotes composition and the big arrow specialization.

Fig. 1. Structure of the Casl-Mdl models (“conceptual” metamodel)

crete metamodel, the first will be used by the human to grasp the notation, and
the latter by the computers to produce and elaborate the Casl-Mdl models.

A Casl-Mdl model consists of entity type declarations (EntityType), of re-
lationships between entity types such as extension and subtyping, of properties
about some of those entities and of definitions describing completely some of
those entities. In this paper for lack of space we consider only the highlighted
parts.

A Casl-Mdl model corresponds to a Casl-Ltl specification with at least
a sort for each declared entity type, whereas the properties are a set of axioms
and the definitions in subspecifications built by the Casl-Ltl “free” construct.
Translation

TModel : Model → Casl-Ltl-Specification
TModel(mod) =
spec mod.name = TETypes(mod.entityType)2 then axioms TProps(mod.property)

The translation of the entity types (at least one must be present in a Casl-
Mdl model) yields a Casl-Ltl specification declaring all the sorts correspond-
ing to the types, plus some auxiliary sorts, and obviously all the declared oper-
ations and predicates.

A property in Casl-Mdl corresponds to some Casl-Ltl formulas on some
of the entities introduced in the model, which will be used to extend the spec-
ification resulting from the type declarations. A Casl-Mdl model having only
properties will in the end correspond to a loose Casl-Ltl specification.

A property may be a constraint consisting of a Casl-Ltl formula written
textually, similarly to the UML constraints expressed using the OCL, but in
Casl-Mdl constraints are suitable to express also properties on the behaviour
of the dynamic systems, whereas OCL roughly corresponds to first-order logic.
In Casl-Mdl it is also possible to visually present some properties having a
specific form, for examples some formulas on the interactions among the parts

2 In the UML the name of the target class with low case initial letter is used to navigate
along an association, thus mod.entityType denotes the set of the elements of class
EntityType associated with mod

Fig. 2. Structure of Type and the Entity types (metamodel)

of a structured system may be expressed visually by diagrams denoted as UML
sequence diagrams, and other formulas may be represented by diagrams similar
to the UML activity diagrams. In this paper we consider only the properties of
kind constraint and interaction properties.

Visually a Casl-Mdl model is a set of diagrams including at least a Type-
Diagram presenting the entity types together with the associated constraints,
and part of the definitions, whereas the other diagrams correspond to the re-
maining kind of definitions and to the properties having a visual counterpart. In
this paper a Casl-Mdl model consists of a type diagram made by entity type
declarations and constraints and of a set of interaction properties.

The TypeDiagram may become quite large and thus hard to read and to
produce, so in Casl-Mdl it is possible to split a TypeDiagram in several ones
to describe parts of the types and of the constraints. Furthermore some features,
as operations and predicates, of a type may be present in one diagram and others
in another one. This possibility is like the one offered by the UML with several
class diagrams in a model (a class may appear in several of them, and some of its
features - operations and attributes - are in one diagram and some in another).

3 Entity Types and Type Diagrams

A type may be either predefined or an entity type (declaration) which, as shown
in Fig. 2, defines a datatype or a dynamic type. In Sect. 3.1 we describe the
datatypes, and in Sect. 3.2 the dynamic types.

The predefined datatypes of Casl-Mdl are those introduced by the Casl
libraries and includes the datatypes, e.g., Nat, Int, List and Set.
Translation

TETypes : EntityType
∗ → Casl-Ltl-Specification

TETypes(et1 . . . etn) =
Library then
Basic(et1 .name) and . . . and Basic(etn .name) then
Detail(et1); . . .Detail(etn);

where Library is a Casl specification corresponding to all the predefined
datatypes (parameterized or not) defined by the Casl libraries [7].

Fig. 3. Datatype Structure (metamodel)

The translation of a set of entity types consists of a Casl-Ltl specification
corresponding to the predefined types, enriched with the basic specifications of all
the types of the model (defined by the function Basic) and after with the details
of each type defined by the Detail function. The Basic function introduces the
sort corresponding to the identifier passed as argument. Splitting the translation
of a Casl-Mdl type allows one to have that a type in the type diagram may
use all the other types present in the same diagram to define its features.

3.1 Datatypes

Casl-Mdl allows to declare new datatypes using the construct Datatype, and
their metamodel is presented in Fig. 33.

The datatypes may have predicates and operations, which must have at least
an argument typed as the datatype itself, and the operations have a return type.

The structure of a datatype of Casl-Mdl may be defined in two different
ways, using either generators or attributes.

In the first case the datatype values are denoted using generators (as in
Casl).4 The arguments of the generators may be typed using the predefined
types (corresponding to those of the Casl library) and the user defined datatypes
and dynamic types present in the same TypeDiagram.

The other possibility is to define the datatype values in terms of attributes,
similarly to UML. An attribute attr: T of a datatype D corresponds to a Casl
operation .attr: D → T. In this case there is a standard generator named as
the type itself having as many arguments as the attributes, but it is introduced
when defining the datype by an appropriate definition.
3 Note that for the UML diagrams we follow the convention that a multiplicity equal

to 1 is omitted, thus an attribute has exactly one type.
4 We prefer to use the term generator instead of constructor used in the OO world to

make clear that in our notation we have datatypes with values and not classes with
objects.

(a) Schematic datatype with attributes (b) Schematic datatype with generators

(c) Alternative visual presentation of an attribute

Fig. 4. Visual notation for datatypes

Fig. 4 presents the visual notation for the two forms of datatypes by means
of two schematic examples, one with attributes and one with generators
(<< pred >> marks the predicates and << gen >> the generators).

The attributes may have a multiplicity, and its meaning is that the type of
the attribute is a set of the associated type and that its values satisfy an implicit
constraint [5] about the size of their set values (e.g., multiplicity 0..1 means that
the attribute may be typed by the empty set or by a singleton, * that may
be typed by any set also empty, and 1..* by any nonempty set). Multiplicity 1
is omitted and corresponds to type the attribute with the relative type. This
construct of the Casl-Mdl motivates the implicit definition of the finite sets
for each type in the translation of the entity types given in the following.

Obviously anonymous casting operations converting values into singleton sets
and vice versa are available.

An attribute attr [m]: T of a dataype D may be also visually presented by
means of an oriented association as in Figure 4(c).

The modellers are free to use plain attributes or their visual counterpart,
but notice that using the arrows shows the structuring relationships among the
various types.

Notice that it is possible that only the name of the datatype is provided
(no generator or attribute, no predicate or operation), and visually it is simply
represented by a box including the name of the datatype.
Translation

Basic : Datatype → Casl-Ltl-Specification
Basic(dat) = FiniteSet[sort dat.name]

The basic part of the translation of a datatype is the Casl specification of
the finite sets of elements of sort dat.name (sort dat.name is declared in the
specification). The need for an implicit declaration of a finite set type for each
datatype (as well as for the dynamic types) is motivated by the possibility to
associate a multiplicity to the attributes, which corresponds to implicitly declare
their type as a set.

Fig. 5. ASSOC: Type Diagram containing some dataypes

Detail : DatatypeAttributes → Casl-Ltl-Specification
Detail(datA) = TAttributes(datA.attribute, datA.name) ;

TPredicates(datA.predicate) ; TOperations(datA.operation) ;
Below we give part Detail of the translation of the schematic example of

datatype with attributes of Fig. 4(a).
op .attr1 : DataA → T1 ; %% an operation corresponding to an attribute

. . .
pred pr : T1 � × . . .× Tk �; %% a predicate . . .
op opr : T1 �� × . . .× Tm �� → T ��; %% an operation . . .

Notice that at this point the standard generator for the sort DataA has not
been introduced, the type has only some selector like operations corresponding
to the attributes (this allows to refine the datatype with more attributes).

Detail : DatatypeGenerators → Casl-Ltl-Specification
Detail(datG) = TGenerators(datG.generator, datG .name) ;

TPredicates(datG.predicate) ; TOperations(datG.operation) ;

Below we give part Detail of the translation of the schematic example of
datatype with generators of Fig. 4(b).
type DataG ::= gen(T1 ; . . .Th) | . . . ;
pred pr : T1 � × . . .× Tk �; %% a predicate . . .
op opr : T1 �� × . . .× Tm �� → T ��; %% an operation . . .

ASSOC Model: Datatypes
Fig. 5 presents a Type Diagram of the Casl-Mdl model of ASSOC contain-

ing only datatypes. It includes some enumerated types, precisely MeetingStatus

and Vote (they are a special case of datatype having only generators without
arguments considered as literal [5]).

Time is a datatype where no detail is given (it just corresponds to the in-
troduction of the type name). Similarly, no generator is available for BallotRule

however a predicate, check, given the votes and the number of voters says if the
voting result was positive or not (Int and List are the predefined Casl datatypes
for integers and lists). There are some generators for the Item datatype, together
with some predicates. Then there are two examples of datatypes with attributes.
A Document has a title and some items (possibly zero), and this is expressed
by the textual attribute title typed by the predefined String and by items rep-
resented by an arrow. A Meeting always has a status, a date and the maximum
number of participants (textual attributes in the picture), and optionally it may
have an agenda and/or minutes (visual attributes with multiplicity 0..1).

Here there is the Casl-Ltl specification fragment corresponding to part
Detail of those types translation.
free type Vote ::= yes | no | null ; %% enumerated type
free type MeetingStatus ::= scheduled | open | failed | closed ;

%% at this stage no generator available for the sort BallotRule
pred check : BallotRule × List [Vote]× Int ;
type Item ::= mkCommunication(String ;String)

| mkDiscussion(String ;String ;BallotRule);
%% An item is a communication or a discussion with a ballot rule

pred isACommunication : Item;
pred approved : Item;
op .status : Meeting → MeetingStatus; %% corresponds to an attribute . . .
op .agenda : Meeting → Set(Document); . . .
axiom ∀ m : Meeting • size(m.agenda) ≤ 1 ∧ size(m.minutes) ≤ 1

Notice that in this part of the translation there is nothing concerning the
datatype Time, since the corresponding sort has been already introduced in the
basic part of the translation of the types (FiniteSet[sort Time]).

3.2 Dynamic Types

In Casl-Ltl and thus in Casl-Mdl the dynamic systems represent any kind of
dynamic entities, i.e., entities with a dynamic behaviour without making further
distinctions (such as reactive, proactive, autonomous, passive behaviour, inner
decomposition in subsystems), and are formally considered as labelled transition
systems, that we briefly summarize below.

A labelled transition system (lts for short) is a triple (State,Label,→), where
State denotes the set of states and Label the set of transition labels, and →⊆
State × Label × State is the transition relation. A triple (s, l , s �) ∈→ is said to
be a transition and is usually written s l−−→ s �.

Given an lts we can associate with each s0 ∈ State a tree (transition tree)
with root s0 , such that, when it has a node n decorated with s and s l−−→ s �,
then it has a node n � decorated with s � and an arc decorated with l from n to

Fig. 6. Dynamic Type Structure (metamodel)

n �. A dynamic system is thus modelled by a transition tree determined by an lts
(State,Label,→) and an initial state s0 ∈ State.

Casl-Ltl has a special construct dsort state label label to declare the two
sorts state and label , and the associated predicate

-- --> : state × label × state
for the transition relation.

Thus a value of a dynamic sort corresponds to a dynamic system, precisely
to the labelled transition tree having such value as root, and thus a Casl-Ltl
specification with a dynamic sort may be truly considered as a dynamic type.

The labels of the transitions of a dynamic system are named in this paper
interactions and are descriptions of the information flowing in or out the system
during the transitions, thus they truly correspond to interactions of the system
with the external world5.

In Fig. 6 we present the structure of the Casl-Mdl declaration of dynamic
types (i.e., types of dynamic systems) by means of its metamodel,6 and later we
will detail the two cases of simple and structured dynamic types.

Simple Dynamic Types The simple dynamic systems do not have dynamic
subsystems, and in the context of this work, the interactions of the simple sys-
tems are either of kind sending or receiving (with a naming convention ! xx and
? yy , for sending and receiving interactions resp.) and are characterized by a
name and a possibly empty list of typed parameters. These simple interactions
correspond to basic acts of either sending out or of receiving something, where
the something is defined by the arguments. Obviously, a send act will be matched

5 Obviously, a transition may also correspond to some internal activity not requiring
any exchange with the external world, in that case the transition is labelled by a
special TAU value.

6 DynamicType is a specialization of Type (see also Fig. 2) which has a link to Part.

Fig. 7. A schematic Simple Dynamic Type

by a receive act of another simple system and vice versa, and again quite obvi-
ously the matching pairs of interactions ! xx (v1 , . . . , vn) and ? xx (v1 , . . . , vn).

The states of simple systems are characterized by a set of typed attributes
(precisely the states of the associated labelled transition system), similarly to
the case of datatypes with attributes (and, as for each attribute, there is the
corresponding operation). A dynamic type DT has also an extra implicit at-
tribute .id: ident DT containing the identity of the specific considered instance;
the identity values are not further detailed. Obviously the identity is preserved
by the transitions and no structured dynamic system will have two subsystems
with the same identity. Notice how the treatment of the identity in Casl-Mdl
is completely different from the one of the UML, where the elements of the
type associated with a class are just their identities, because Casl-Mdl is not
object-oriented.

Fig. 6 shows that a simple dynamic type (i.e., a type of simple systems) is
determined by a set of elementary interactions (EInteraction) and by a set of
attributes; notice that it has also a name since SimpleDynamicType specializes
EntityType, see Fig. 2.

In Fig. 7 we present the visual notation for the simple dynamic types by the
help of a schematic example.
Translation

Basic : SimpleDynamicType → Casl-Ltl-Specification
Basic(simpDT) =

FiniteSet[sort simpDT .name] and Ident with ident �→ ident simpDT.name

The basic translation of a simple dynamic type includes also the declaration of
a datatype for the identity of the dynamic systems having such type.

Detail : SimpleDynamicType → Casl-Ltl-Specification
Detail(simpDT) =

dsort simpDT .name label label simpDT .name
op .id : simpDT.name → ident simpDT.name
TAttributes(simpDT.attribute, simpDT .name);
TEInteractions(simpDT.eInteraction, label simpDT .name);

Fig. 8. ASSOC Example: a type diagram including simple dynamic types

ASSOC Model: Simple Dynamic Types
Fig. 8 presents a type diagram including two declarations of simple dynamic

types. Notice that the type Member has other elementary interactions, e.g.,
! vote(Item,Vote,Ident Member) concerning taking part in a meeting not reported
here, they are visible in the complete type diagram [5]).

The simple dynamic type Association models the various associations, char-
acterized by a name and by their members (given by the attributes name and
members, the latter represented visually as an arrow). We have used a dynamic
system and not a datatype since we are interested in the dynamic behaviour
of an association. The elementary interaction ? scheduleMeeting corresponds to
receive a request to schedule a new meeting of the association board, and the
last two parameters correspond to the meeting date and agenda, whereas the
first, typed by Ident Association is the identity of the association itself. ! Ok and
! Ko correspond respectively to answer positively and negatively to that request.

Part Detail of the translation of the simple type Association is as follows.
dsort Association label label Association
op .id : Association → ident Association
op .name : Association → String
op ? scheduleMeeting : ident Association×Time×Document → label Association
op ! Ok , ! Ko,TAU :→ label Association

TAU is a special implicit element used to label the transitions that do not
require any exchange of information with the external world, thus without any
interaction. Notice that the sorts Association and ident Association have been
already introduced by the basic part of the type translation.

Structured Dynamic Types We recall that a structured system (cf. Fig. 6)
is characterized by its parts, or subsystems (that are in turn other simple or
structured dynamic systems), and has its own elementary interactions and name.

In Fig. 9 we present the visual syntax by the above schematic structured
dynamic type; its parts are depicted by the dashed boxes (in this case all of

Fig. 9. A schematic Structured Dynamic Type

them have multiplicity one); DType1, DType2, . . . , DTypeN are dynamic types
(i.e., types corresponding to dynamic systems, simple or structured, defined in
the same model) and P1, P2, . . . , PN are the optional names of the parts. At this
level we only say that there will be at least those parts, but nothing is said about
the way they interact with each other and on the behaviour of the whole system.
We use two different boxes for the elementary interactions and the structure in
terms of parts to keep the internal structuring encapsulated.

A structured dynamic type has a predefined predicate isPart checking if it
has a part having a given identity.
Translation

Basic : StructuredDynamicType → Casl-Ltl-Specification
Basic(structDT) =

FiniteSet[sort structDT.name] and
Ident with ident �→ ident structDT.name and LocalInteractions

LocalInteractions specifies the local interactions sets of the structured dy-
namic systems defined by structDT, where a local interaction is a pair consisting
of the identity and of an elementary interaction of one of the parts of structDT ;
the local interactions are added to the labels of the associated labelled transition
system to record the activities of the parts.

Detail : StructuredDynamicType → Casl-Ltl-Specification
Detail(structDT) =

dsort structDT.name label label structDT.name
op .id : structDT.name → ident structDT.name
pred isPart : structDT.name× ident all
TParts(structDT .part, structDT .name);
TEInteractionsStruct(structDT .eInteraction, label structDT .name,

localInteractions structDT .name);
ident all is an extra auxiliary sort having as subsorts the identity sorts of all the
dynamic systems in the model.

ASSOC Model: Structured Dynamic System

Fig. 10. ASSOC Example: a type diagram including a structured dynamic type

The whole world of ASSOC is modelled as a structured dynamic system
ASSOC having as parts the associations, the members and the chairs, any number
of them (see the multiplicity * on the three parts). ASSOC is a closed system,
that is it does not interact with its external world and so it has no elementary
interactions, and all the transitions of the associated labelled system will be
labelled by the special null interaction TAU .

The Casl-Ltl specification fragment corresponding to the detail part of the
translations of the structured dynamic type ASSOC is given below.

dsort ASSOC label label ASSOC
op .id : ASSOC → ident ASSOC
op associations : ASSOC → Set [Association]
op members : ASSOC → Set [Member]
op chairs : ASSOC → Set [Chair]
pred isPart : ASSOC × ident all
op TAU : localInteractions ASSOC → label ASSOC

where LocalInteractions= FiniteSet[LocalInteraction] and
LocalInteraction =
free type = LocalInteraction ::=
< > (ident Association; label Association) |
< > (ident Member ; label Member) |
< > (ident Chair ; label Chair)

4 Interaction properties

The metamodel of Casl-Mdl interaction properties is given in Fig. 11.
An interaction property describes the way parts of a structured dynamic sys-

tem (that are in turn dynamic systems) interact. Thus, first of all it should be
anchored to a specific structured dynamic system represented by an expression
typed by a structured dynamic type, which may have free variables, correspond-
ing to express a property on more than one dynamic system. Furthermore an
interaction property includes a context defining the other free variables (univer-
sally and existentially quantified) that may appear in it.

In Casl-Mdl, contrary to UML sequence diagrams, an interaction property
explicitly states if it expresses a property of all possible lives of the anchor, or if
there exists at least one life of the anchor satisfying that property. It also states

Fig. 11. Interaction Properties structure (metamodel)

whether the property about the interactions must hold in all possible instants of
those lives, or if eventually there will be an instant in which it will hold. Thus an
interaction property has a modality, that may assume four values, see Fig. 11.

The Interaction part expresses the required pattern on the interactions among
the parts of the anchor and it may be a basic interaction, or a structured in-
teraction built by some combinators (in this paper we consider only alternative,
sequential composition and implication).

As shown in Fig. 12, an interaction property is visually presented by reusing
the UML sequence diagrams (any v1:T1,. . . ,vn:Tn, one v’ 1:T’ 1,. . . ,v’ m:T’ m is
the context).

The BasicInteraction, defined in Fig. 13, is the simplest form of Interaction

and just corresponds to assert that a series of elementary interaction occurrences
happen in some order among some generic roles for dynamic systems parts of
the anchor (lifelines), where an interaction occurrence is the simultaneous per-
forming of a pair of matching input and output elementary interactions by two
lifelines.

A lifeline is characterized by a name (just an identifier) and a (dynamic) type
and defines a role for a participant to the interaction. An elementary interaction
occurrence connects two lifelines in specific points (represented by the lifeline

Fig. 12. Visual presentation of a generic Casl-Mdl interaction property

Fig. 13. Structure of Basic Interactions (metamodel)

fragments); the ordering of the interaction points of the various lifelines must
determine a partial order on the interaction occurrences. An interaction occur-
rence is characterized by the name of an elementary interaction s.t. the source
type owns it with kind “send” and the target type owns the matching one with
the kind “receive”, and a set of arguments represented by expressions whose
types are in accord with the parameters of the two elementary interactions.

Visually a lifeline is depicted as a box containing its name and type, and
by a dashed line summarizing all its fragments, whereas an interaction occur-
rence is depicted as a horizontal arrow with filled head from the source lifeline
to the target one. An elementary interaction occurrence arrow is labelled by
inter(exp1. . . ,expn) where ! inter is the send interaction of T1, ? inter the receive
interaction of T2, and exp1 . . . , expn are expressions whose types are in order
those of the arguments of ! inter, that are the same of those of ? inter. Fig. 14
shows a generic case of two lifelines and of an elementary interaction occurrence.

As in the UML the relative distance between two elementary interaction
occurrences has no meaning, similarly the only guaranteed ordering is among the
the occurrences attached to a single lifeline (due to the ordering of its fragments),
whereas in the other cases the visual ordering between two occurrences has no
meaning. In Fig. 15 we show two different basic interactions that are, however,
perfectly equivalent determining both the partial order listed at the bottom;
notice that there are many other ones visually different but still equivalent.

An interaction property corresponds to a Casl-Ltl formula.
Translation

TIntProp : InteractionProperty → Casl-Ltl-Formula
TIntProp(iPr) =

Fig. 14. Generic example of elementary interaction occurrence

Fig. 15. Two perfectly equivalent basic interactions

∀ freeVarsTContext(iPr.context) • (∧x∈iPr.lifeline isPart(x .id , iPr.anchor)) ⇒
TModal(iPr.modality, iPr.anchor,TInteract(iPr.interaction, true))

where freeVars are all the free variables appearing in the anchor expression and
those corresponding to the lifelines.

TModal : Modality× Exp×Casl-Ltl-PathFormula → Casl-Ltl-Formula
TModal(in any case always, dexp,PF) = in any case(dexp, always PF)

similarly for the other three cases
TInteract : Interaction×Casl-Ltl-PathFormula → Casl-Ltl-PathFormula
The translation of an interaction is defined by cases, depending on its par-

ticular type, and takes as argument a path-formula that will play the role of a
continuation; this technical trick allows to correctly translate sequential compo-
sitions of interactions.
TInteract(basicInt, cont) =
∨eIOci1 ...eIOcin admissible ordering of eIOc1 ,...,eIOcn

TIntOcc(eIOci1) ∧ eventually (TIntOcc(eIOci2) ∧ (eventually . . .
(TIntOcc(eIOcin) ∧ eventually cont) . . .))

Fig. 16. ASSOC: scheduling a new meeting (successful case)

where basicInt.eInteractionOccurence = eIOc1 , . . . , eIOcn
TIntOcc : InteractionOccurrence → Casl-Ltl-PathFormula

TIntOcc(eIOc) =
(x .id:! inter(exp1 , . . . , expn) ∧ y .id:? inter(exp1 , . . . , expn))7

where eIOc has the form in Fig. 14.
Fig. 16 shows an interaction property with a basic interaction modelling a

successful scheduling a new meeting. This diagram presents a sample of a possible
way to execute the successful scheduling of a meeting, precisely the chair asks
the association to schedule a new meeting passing the date and the agenda, the
association answers ok, and then informs the board members of the new meeting.

Fig. 11 presents also the structured interactions. We can see that it is possible
to express:

– the sequential composition of two interactions, with the intuitive meaning to
require that the interaction pattern described by the before argument is followed
by the interaction pattern described by the after argument;

– the choice among several guarded alternatives, subsuming conditional and
nondeterministic choices; one of the interaction patterns corresponding to the
alternatives with the true guard must be performed, if no guards is true it
corresponds to require nothing on the interactions;

– the fact that the happening of some elementary interactions matching a
given pattern (represented by a basic interaction) must be followed mandatory
by some elementary interactions matching another pattern.

The visual representation of these structured interactions is illustrated in Fig. 17
and Fig. 18.

To model that the answer of the association may be also negative (elemen-
tary interaction ko) we need the structured interactions built with the sequential
and alternative combinators, and this corresponds to give just some samples of
successful and of failed executions, whereas to represent that after a request of
scheduling a new meeting there will be surely an answer by the association we
need the implication combinator. Fig. 17 and Fig. 18 presents the interaction
properties, with a structured interaction part, corresponding to those cases. In
Fig. 17 we have the sequential combination of a basic interaction consisting just
of the elementary interaction occurrence scheduleMeet(A.id,when,ag) followed by
the alternative among two basic interactions, where the guards are both true

corresponding to the pure nondeterministic choice. Again this diagram presents
sample of the execution of the scheduling procedure, making explicit that there
are two possibilities, a successful one and a failing one; but this diagram does
not require that any request to an association will be followed by an answer.
Fig. 18 instead shows that an occurrence of the elementary interaction schedule-

Meet(A.id,when,ag) will be eventually either followed by an occurrence of ko() or
of ok(). Notice that the modality of this interaction property is different, it says
that whenever the scheduling request occurs it will be followed by an answer.
Translation

7 Recall that .id is the standard attribute returning the identity of a dynamic system,
and that id: interact is a local interaction atom.

Fig. 17. ASSOC: scheduling a new meeting (sequence and alternative combinator)

Fig. 18. ASSOC: scheduling a new meeting (implies combinator)

TInteract: Interaction×Casl-Ltl-PathFormula → Casl-Ltl-Formula
TInteract(altInt, cont) =

∧J⊆{1 ,...,n} ((∧j∈J opj .guard ∧ ∧i∈{1 ,...,n}−J ¬ opi .guard) ⇒
∨j∈J TInteract(opj .interaction, cont))

where altInt.operand = op1 , . . . , opn

TInteract(seqInt, cont) = TInteract(seqInt.before,TInteract(seqInt.after, cont))
TInteract(implInt, cont) =
∧eIOci1 ...eIOcin admissible ordering of eIOc1 ,...,eIOcn

(TIntOcc(eIOci1) ⇒ next always (TIntOcc(eIOci2) ⇒ next always (. . .
(TIntOcc(eIOcin) ⇒ next eventually TInteract(implInt.consequence, cont)) . . .)))

where implInt.premise.eInteractionOccurence = eIOc1 , . . . , eIOcn

Here there is the Casl-Ltl formula corresponding to the interaction property
of Fig. 17 after some simplifications due to the fact that the guards are both
equal to true:

∀ AX: Assoc,when: Time, ag: Document ,CH: Chair ,A: Association,M: Member
∃ meet: Meeting •
(isPart(CH .id ,AX) ∧ isPart(A.id ,AX) ∧ isPart(M .id ,AX)) ⇒

in one case(AX , eventually
(CH .id:! scheduleMeet(A.id ,when, ag) ∧ A.id:? scheduleMeet(A.id ,when, ag) ∧
(eventually

(A.id:! ok() ∧ CH .id:? ok() ∧ eventually
(A.id:! newMeet(A.name,meet) ∧ M .id:? newMeet(A.name,meet)))

∨ (A.id:! ko() ∧ CH .id:? ko())))

The Casl-Ltl formula corresponding to the interaction property of Fig. 18
can be found in [5].

5 Conclusions and future work

In this paper we present a part of Casl-Mdl, a visual modelling notation based
on Casl-Ltl (the extension for dynamic system of the algebraic specification
language Casl developed by the Cofi initiative). The visual constructs of Casl-
Mdl have been borrowed to the UML, so as to use professional visual editors;
in this paper for example we used Visual Paradigm for UML8.

A Casl-Mdl model is a set of diagrams but it corresponds to a Casl-Ltl
specification, thus Casl-Mdl is a suitable means to easily read and write large
and complex Casl-Ltl specifications; furthermore the quite mature technologies
for UML model transformation may be used to automatize the transformation
of the Casl-Mdl models into the corresponding Casl-Ltl specifications.

Casl-Mdl may be used by people familiar with Casl-Ltl to produce in
an easier way specifications written with it with the help of an editor. However,
the corresponding specifications are readable and can be modified directly, for
example if there is the need of fine tuning for automatic verification.

We present here a part of Casl-Mdl, the type diagram and the interaction
diagrams, [5] presents also constraints, definitions for datatypes (which make
precise their structure and the meaning of their operations and predicates),
definitions of structured dynamic types, which fix their structures and the way
their parts interact among them, and interaction machines, which are diagrams
visually similar to the UML state machines, modelling the behaviour of the
simple dynamic types.

We are currently working out the relationships among the types, and consider
the introduction of workflow-like diagrams similar to the UML activity diagrams
to visualize formulas on the behaviour of groups of dynamic systems.
8
http://www.visual-paradigm.com/product/vpuml/

UML is the most relevant visual modelling notation, thus it is important to
asses the common aspects and the differences with Casl-Mdl.

Casl-Mdl and UML are visually alike, but they are quite different, first of
all because Casl-Mdl is not object-oriented and has a simple “native” formal
semantics, and because the semantics of syntactically similar constructs is not
exactly the same. Consider for example the Casl-Mdl interaction diagrams
visually similar to the UML sequence diagrams; the interaction diagrams allow
also to express implications among the interactions (message exchanges in the
UML), thus they are more powerful than the UML sequence diagrams, and closer
to the live charts of Harel and Damm [8]. The appendix compares in a tabular
form the features of Casl-Mdl and of UML.

We think that a careful investigation of the differences and relationships be-
tween Casl-Mdl and UML may have as a result a better understanding of some
of the UML constructs and perhaps some suggestions for possible evolutions.

As regards the relationships between the UML and Casl-Mdl let us note
that Casl-Mdl is not a semantics of the UML expressed in Casl-Ltl, and that
it is not true that a Casl-Mdl model may be transformed into an equivalent
UML model

Acknowledgements: We warmly thank Maura Cerioli for a careful reading of
a draft of this paper, and for her valuable comments. We would also like to thank
Hubert Baumeister and the anonymous referees for their helpful comments.

References

1. M. V. Cengarle, A. Knapp, and H. Mühlberger. Interactions. In K. Lano, editor,
UML 2 Semantics and Applications, pages 205–248. John Wiley & Sons, 2009.

2. C. Choppy and G. Reggio. Improving use case based requirements using for-
mally grounded specifications. In Fundamental Approaches to Software Engineer-

ing, LNCS 2984, pages 244–260, 2004.
3. C. Choppy and G. Reggio. A UML-Based Approach for Problem Frame Oriented

Software Development. Journal of Information and Software Technology, 47:929–
954, 2005.

4. C. Choppy and G. Reggio. A formally grounded software specification method.
Journal of Logic and Algebraic Programming, 67(1-2):52–86, 2006.

5. C. Choppy and G. Reggio. CASL-MDL, modelling dynamic systems with a formal
foundation and a UML-like notation (full report). Technical report, Universite
Paris 13, and Universita di Genova, 2010. http://www-lipn.univ-paris13.fr/

~choppy/REPORTS/casl-mdl-report.pdf.
6. C. Choppy and G. Reggio. Service Modelling with Casl4Soa: A Well-Founded

Approach - Part 1 (Service in isolation). In Symposium on Applied Computing,
pages 2444–2451. ACM, 2010.

7. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS Vol.
2960 (IFIP Series). Springer, 2004.

8. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

9. A. Fish, J. Howse, G. Taentzer, and J. Winkleman. Two visualisations of OCL: A
comparison. Technical Report VMG.05.1, University of Brighton, 2005.

10. S.-K. Kim and D. Carrington. Visualization of formal specifications. In Proceedings

of the Sixth Asia Pacific Software Engineering Conference, APSEC ’99, pages 38–
45. IEEE Computer Society, 1999.

11. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dy-
namic Reactive Systems Version 1.0–Summary. Technical Report DISI-TR-03-36,
2003.

12. UML Revision Task Force. OMG UML Specification. http://www.uml.org.

A Comparison between Casl-Mdl and UML

Casl-Mdl UML
datatypes
user defined attribute style + +
user defined with
constructors a la ML +
explicit predicates +
partial operations + exceptions?

OCL ?
property oriented invariants, pre-post conditions invariants
definition on operations plus any kind pre-post conditions

of first order formulas about on operations
operations, constructors
and attributes

constructive definition rule-based definitions of methods associated
operations and constructors with operations

dynamic entities
dynamic systems active objects

communication mechanism execution of groups of matching operation call and
elementary interactions signal sending

property oriented definition branching time temporal logic invariants,
formulas (e.g., invariants, pre-post conditions
safety and liveness) on operations

constructive definition interaction machine state machine
(reactive, proactive, passive (reactive behaviour)
and internal behaviour)

objects as a special kind of passive native objects
dynamic systems

structured dynamic structured dynamic systems standard community
entities of all objects,

structured classes
specification of the interaction properties sequence diagrams
interaction among (possibility of expressing (samples of message
components of liveness and safety properties) exchanges)
structured entities
workflow under development activity diagrams

.............

